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DERIVED FUNCTOR COHOMOLOGY GROUPS

WITH YONEDA PRODUCT

Hafiz Syed Husain a, ∗ and Mariam Sultana b

Abstract. This work presents an exposition of both the internal structure of de-
rived category of an abelian categoryD∗(A) and its contribution in solving problems,
particularly in algebraic geometry. Calculation of some morphisms will be presented
between objects in D∗(A) as elements in appropriate cohomology groups along with
their compositions with the help of Yoneda construction under the assumption that
the homological dimension of D∗(A) is greater than or equal to 2. These compu-
tational settings will then be considered under sheaf cohomological context with a
particular case from projective geometry.

1. Introduction

The introduction to the notion of both, the triangulated and derived categories,

can be motivated from classical accounts of [7, 9], or from comparatively recent and

comprehensive expositions [4, 19]. However, for those coming from non-specialist

backgrounds, a very concise introduction can be found in [8, 17, 18] and the appendix

of [1]. This roughly amounts to conceiving derived categories D(A), modelled on

an abelian category A, as the objects that solve the following universal mapping

problem

(1.1) Kom(A)
Q

//

F

%%K
KK

KK
KK

KK
K

D(A)

∃!G
��

D

where Kom(A) is the category of complexes of objects from A, Q is the functor that

maps quasi-isomorphisms to isomorphisms (i.e., whenever f : A• → B• a morphism
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in Kom(A) with Hn(f) : Hn(A•)
≃→ Hn(B•), then Q(f) is an invertible arrow

inMor(D(A)) -the collection of all morphisms in D(A)); then any functor F from

Kom(A) to D that maps quasi-isomorphisms in Kom(A) to isomorphisms in D must

factor throughG uniquely. This makes derived category merely an object that exists.

It is important that one must have a way of actually carrying out the construction

that would satisfy the corresponding universal diagram. This is worked out with the

help of the notion of localizing class S, for which the above functor Q is the localiz-

ing functor, a process that pretty much mimic the process of fractionalizing a ring

R over a multiplicative set S, specifically when the canonical map ϕ : R → R[S−1]

may not be injective. This whole process admits an interpretation of D(A) as the

localization of homotopy category of the same abelian category denoted by K(A),
by class of all quasi-isomorphisms (see [4, 7, 18]). Once derived category is identified

this way, the internal structure of it renders its object be interpreted as complexes

of objects from A. But the class of morphisms, denoted by Mor(D(A)), becomes

quite complicated to describe as a result of the collapsing that occurs due to the

equivalence relation induced from the localizing. This is then captured through the

calculus of fractions as both right S-roofs and left S-roofs [9]. Here, we may assume

the facts that every derived category is triangulated and the abelian category A sits

inside the corresponding D(A) as a full subcategory [7]. Also, it is usually D∗(A)
with ∗ ∈ {+,−, b} that has practical significance in most applications corresponding

to the interpretation that the derived category consists of objects (up to isomor-

phism in D∗(A)) which are bounded from left, or right, or both from left and right

respectively. We will be primarily assuming D+(A) unless stated otherwise after

the fact that our category A has enough injectives. However, in case A corresponds

to the category of coherent sheaves, neither the existence of enough projectives nor

enough injectives can be taken for granted [1, 8]. In order to exemplify the internal

structure of D(A), what we want to do is calculate and describe morphisms between

its objects which are of particular interest in application in geometry. For this we

require Yoneda’s construction the detail of which can be found in [1, 4, 7, 8], which

predominantly describe the construction over coherent sheaves. This helps interpret

its extension to the derived functors ExtiA(A
•, B•) as HomD(A)(A

•, B•[i]) defining

a grading on Ext groups as
⊕n

i≥0 Ext
i
A(A

•, B•) such that A•, B•, C• are successive

elements in the (possibly) infinite sequence ∈ Πi≥nD
•
i , i ∈ Z of objects from D(A);
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with Yoneda products

(1.2) ExtiA(A
•, B•)× ExtjA(B

•, C•) −→ Exti+j
A (A•, C•)

such that these products are then found to be coinciding with compositions in the

derived category D(A) as follows:

HomD(A)(A
•[k], B•[k + i])×HomD(A)(B

•[k + i], C•[k + i+ j])

−→ HomD(A)(A
•[k], C•[k + i+ j]).(1.3)

2. Results and Discussion

In what follows, we work out some examples of these constructions and inter-

pretations and give our explicit calculations. Here, we assume the embedding of A
in D(A) as a full subcategory and apply both ExtA(−,−) and HomD(A)(−,−) on

objects and morphisms from A considered inside Ab (i.e., the category of abelian

groups) and D(A) respectively. This will have the advantage of avoiding the use

of spectral sequences which are an indispensable tool when such examples are com-

puted under the identification of Ext and Hom at D(A) in general.

Lemma 2.1. Let A be any abelian category with a filtration F1 ⊂ F2 ⊂ G of G from

A yielding an exact sequence

(2.1) 0 −→ F1 −→ F2
f−→ G/F1 −→ G/F2 −→ 0

where f is the usual composition of the embedding F2 → G followed by canonical

surjection G → G/F1. Let α ∈ Ext2A(G/F2,F1) ≃ HomD(A)(G/F2,F1[2]) correspond

to this exact sequence, then ∃ α1 ∈ Ext1A(F2/F1,F1) ≃ HomD(A)(F2/F1,F1[1])

and α2 ∈ Ext1A(G/F2,F2/F1) ≃ HomD(A)(G/F2, (F2/F1)[1]) corresponding to short

exact sequences 0 −→ F1 −→ F2 −→ F2/F1 −→ 0 and 0 −→ F2/F1 −→ G/F1 −→
G/F2 −→ 0 respectively; such that α = α1 · α2.

Proof. Following Yoneda’s construction, we first describe α1 and α2 in HomD(A)

(F2/F1,F1[1]) and HomD(A)(G/F2,F2/F1[1]) respectively. Define an acyclic com-

plex

L• : 0→ L−1 = F1
d−1

→ L0 = F2
d0→ L1 = F2/F1 → 0

with d−1 corresponds to the usual embedding and d0 corresponds to the canonical

projection, then we obtain a quasi-isomorphism: L̃• sL•−→ (F2/F1)[0], such that



190 Hafiz Syed Husain & Mariam Sultana

L̃• : 0 −→ L−1 = F1
d−1

−→ L0 = F2 −→ 0

with siL• = 0, ∀i ̸= 0, siL• = d0L• , i = 0. Similarly, we get L̃• gL•−→ F1[1] such that

giL• = 0, ∀i ̸= −1, g−1
L• = idF1 .

This gives both α1 and T (α1) = α1[1] as left S-roofs (or as a left fraction

(sL• , gL•) =: gL•/sL• ), with T being the usual autoequivalence of shift func-

tor that D(A) inherits from its triangulated structure (thus, HomD(A)(A
•, B•) ≃

HomD(A)(T (A
•), T (B•)) and A•[1] ≃ T (A•) as an object in D(A))

α1 : (F2/F1)[0]
sL•←− L̃• gL•−→ F1[1] =⇒ T (α1) : (F2/F1)[1]

sL• [1]←− L̃•[1] gL• [1]−→ F1[2].

Now consider α2 ∈ HomD(A)(G/F2,F2/F1[1]). We similarly define

K• : 0→ K−1 = F2/F1
d−1

→ K0 = G/F1
d0→ K1 = G/F2 → 0

where d−1 and d0 are canonical projections which are guaranteed from the third

isomorphism theorem of modules over a ring once Fred-Mitchell Embedding theorem

is assumed [19]; giving us the quasi-isomorphism: K̃• sK•−→ (G/F2)[0], with siK• =

0, ∀i ̸= 0, s0K• = d0K• and K̃• gK•−→ (F2/F1)[1] given by giK• = 0, ∀i ̸= −1, g−1
K• =

id(F2/F1)[1]. This gives us the representation of α2 as a left S-roof (or as a left

fraction (sK• , gK•) =: gK•/sK• ) as follows:

(G/F2)[0]
sK•←− K̃• gK•−→ (F2/F1)[1].

We can now define the composition α = α1 · α2 = y(L•) ◦ y(K•)⇒ (sL• [1], gL• [1]) ◦
(sK• , gK•) such that we get

(2.2) M̃•

s′

zztt
tt
tt
tt
tt
t

g′

%%KK
KKK

KKK
KKK

K̃•

sK•

zzvv
vv
vv
vv
vv

gK•

$$I
II

II
II

II
I L̃•[1]

sL• [1]

yysss
sss

sss
s

gL• [1]

##F
FF

FF
FF

FF

(G/F2)[0] (F2/F1)[1] F1[2]

with M̃• = y(M) such that M is the same length 2 exact sequence given in (2.1)

above, giving α = α1 · α2 = (sK•s′, gL• [1]g′) ∈ HomD(A)(G/F2,F1[2]). �

Lemma 2.2. Let α ∈ Ext2A(G/F2,F1) be as proposed in Lemma 2.1 above, then

α = 0.
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Proof. We show α = 0 by showing that α ≃ 0 inMor(D(A)). Now from Proposition

2.3 above we know that α in HomD(A)(G/F2,F1[2]) ⊂Mor(D(A)) is representable
as a left S-roof

(2.3) M̃•

sK•s′

zztt
tt
tt
tt
tt

gL•g′

""F
FF

FF
FF

FF

(G/F2)[0] F1[2]

We define a morphism 0 ∈ HomD(A)(G/F2,F1[2]) as a left S-roof

(2.4) J •

id

zztt
tt
tt
tt
t

0

""E
EE

EE
EE

E

(G/F2)[0] F1[2]

with (J •) = (G/F2)[0], then we can have I• : 0 → 0 → F2 → G/F1 → 0 such that

we get

(2.5) I•
sI•

}}{{
{{
{{
{{ gI•

  
BB

BB
BB

BB

M̃• J •

with siI• = id for 0 ≤ i ≤ 1 and is trivial in all other i, giI• = id for i = 0 and is

trivial for all other i. All this finally gives rise to a following diagram that commutes

up to homotopy (which is fairly straightforward to verify)

(2.6) (G/F2)[0]

M̃•

sK•s′
::ttttttttt

gL•g′ $$J
JJ

JJ
JJ

JJ
J I•

sI•
oo

gI•
// J •

0
zzuuu

uuu
uuu

u

id
ddIIIIIIIIII

F1[2]

thereby establishing that α ≃ 0 in HomD(A)(G/F2,F1[2]), which implies α = 0 in

Ext2(G/F2,F1). �

This gives α as a 2-dimensional analogue of 0 in Ext1(−,−) which can be in-

terpreted analogously as a short exact sequence that splits. The classical homo-

logical approach of Cartan-Eilenberg would have accessed the same situation with

the help of resolutions (injective or projective) giving Ext-groups as derived func-

tor cohomology objects ExtiA(C,A) ≃ H i(R(HomA(C,A))) ≃ H i(HomA(C, I
•
A))
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or ExtiA(C,A) ≃ H i(R(HomA(C,A))) ≃ H i(HomA(P
•
C , A)); where A

quis→ I• and

C
quis→ P • are injective and projective resolutions of A and C respectively which

are quasi-isomorphisms, hence isomorphisms in D(A) (A,C ∈ ObA). Even at this

level without historical reference to derived category, one can see the transition from

Kom(A) to D(A) via K(A) as follows. Consider

ExtiA(C,A) =
ker(HomAb(C, I

i)
di∗I•→ HomAb(C, I

i+1))

Im(HomAb(C, Ii−1)
di−1
∗I•→ HomAb(C, Ii))

then α ∈ ExtiA(C,A)⇒ α ∈ HomAb(C, I
i) determining the morphism of complexes

α• ∈ Mor(Kom(A)) as α• : C → I•, αj = 0, ∀j ̸= i, αi = α : C → Ii. However, if

α = 0 ∈ ExtiA(C,A), then it determines a morphism of complexes α• ∈Mor(K(A))
such that α• = 0 ∈ HomK(A)(C, I

•[i]), since it is homotopically trivial determined

by homotopies h = Πj≥0h
j , hj : C → Ij−1 such that hj = 0, ∀j ̸= i, hi = β ∈

HomAb(C, I
i−1) with di−1

I• (β) = 0. We thus have ExtiA(C,A) ≃ HomD(A)(C,A[i])

via ExtiA(C,A) ≃ HomK(A)(C, I
•[i]), HomK(A)(C, I

•[i]) ≃ HomD(A)(C, I
•[i]) and

HomD(A)(C, I
•[i]) ≃ HomD(A)(C,A[i])). All this then further generalizes to genuine

complexes via the notion of inner-hom Hom•(A•, B•) which is a complex in Kom(Ab)

the nth-objecct of which is (Hom•(A•, B•))n = Πi∈ZHomAb(A
i, Bi+n) with differen-

tials dn(−) = dB•(−) − (−1)n(−)dA• , which determines the homotopy equivalence

to 0 at each ith degree, the special case of which was already determined above

as di−1
I• (β) = 0. For instance f ∈ (Hom•(A•, B•))n ⇒ f = (. . . , f−1, f0, f1, . . .),

then at nth place, dn(f) = di+n
B• (fi) − (−1)n(fi)di−1

A• , here n is just the shift func-

tor in disguise that would later descend to triangulated K(A) and then to D(A)
and the negative sign in (−1)n takes care of the negative of the differential in A•

which is the result of shifting the complex by ith-degree to the left (depending upon

whether i is even or odd) to match the homotopy calculation. Then, we define

Exti(A•, B•) ≃ H i(R(Hom•(A•, B•))) as a convergent spectral sequence [8].

We want to discuss a concrete application to match the abstract setting of Lem-

mas 2.1 and 2.2 from algebraic geometry (which will be our Proposition 2.4 below).

From this point onwards, we define a smooth complex projective algebraic variety X

as a separated scheme of finite type over C which is projective over C and is locally

regular; i.e., all its local rings are regular (we have relaxed the classical Hartshorne

condition of integrality [6]); thus, all our varieties X are smooth, complex and pro-

jective. Let A denote the category of coherent sheaves on X. Then A can already
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be seen as a weak invariant of X in the sense if dim(X) = n, we have homological

dimension of A, denoted by dh(A), equals n as well and the fact that if there is an

equivalence between categories of coherent sheaves of X1 and X2 then X1 ≃ X2;

a corollary and an application Orlov’s famous theorem about the existence and

uniqueness of Fourier-Mukai transforms [17]. Also, we will not make any distinction

between classical notion of a variety and its scheme theoretic counterpart, something

which makes perfect sense from [6]. Following proposition has its motivation in the

classical sources as [6, 7]. We give our explicit proof as follows.

Proposition 2.3. Let X be any smooth complex projective variety with Db(X) as

its bounded derived category of coherent sheaves and ωX be its canonical bundle. Let

RHom(F•,OX) =:df (F•)∨ denote the derived dual of (F•) and Πi∈I(F•
i ) be any

sequence of objects from Db(X) with Yoneda products

y : ExtkA(F•
i−1,F•

i )× ExtlA(F•
i ,F•

i+1) −→ Extk+l
A (F•

i−1,F•
i+1)

then y descends to corresponding products on sheaf cohomology

ỹ : Hn−k(X, (F•
i−1)

∨ ⊗F•
i ⊗ ωX)×Hn−l(X, (F•

i )
∨ ⊗F•

i+1 ⊗ ωX)

−→ Hn−k−l(X, (F•
i−1)

∨ ⊗F•
i+1 ⊗ ωX)

Proof. First of all we know that Db(X) is C-linear, thus it is equipped with Serre’s

functor [2, 17] the special case of which is Serre’s duality Exti(F , ωX) ≃ Hn−i(X,F)∗

[6]. Also, since dh(Db(X)) = dim(X), thus all gradings
⊕

0≤i≤n Ext
i
A are finite,

such that Extp+q(A•, B•) is obtained as the convergent spectral sequence Ep,q
2 =

RpHom•(A•,Hq(B)•) ≃ Extp(A•,Hq(B)•) (provided A has enough injectives). On

the other hand since A almost never has enough projectives thus we have another

spectral sequenceHp
IIH

q
I (L

•,•) = Extp(H−q(A•), (B)•) converging to Extp+q(A•, B•);

where L•,• is the Cartan-Eilenberg resolution of A• (see [3] or [8]). Hence, the

transition from Ext-groups of coherent sheaves sitting as 0-degree in Db(X) to Ext-

groups of complexes of them makes sense. These identifications through spectral

sequences (also known as special cases of Grothendieck spectral sequences) establish

ExtiA(A
•, B•) ≃ HomD(A)(A

•, B•[i]). One similarly uses Leray spectral sequence to

arrive at Hi(X,F•) from Hi(X,F) to obtain Serre duality at the level of Db(X); i.e.,

Exti(F•, ωX) ≃ Hn−i(X,F•)∗ [7]. Serre’s duality from [6] only makes sense at the

level of A; i.e., coherent sheaves. Then, from [6] and above, we get the identifications
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Exti(F•,G•) ≃ Extn−i(G•,F• ⊗ ωX)

≃ Extn−i(OX , (G•)∨ ⊗F• ⊗ ωX)

≃ Rn−iΓ(X, (G•)∨ ⊗F• ⊗ ωX)

≃ Hn−i(X, (G•)∨ ⊗F• ⊗ ωX).

(Note: no need to derive tensor product in above expressions because ωX is a line

bundle.) �

We now relate both Lemmas 2.1 and 2.2 in context of Proposition 2.3, and dis-

cuss a specific concrete case from projective geometry. It is here that the restric-

tion on homological dimension is particularly informative. Restricting homologi-

cal dimension to be at least greater than or equal to 2 involves the cases of com-

plex algebraic surfaces and their higher dimensional analogues only -for instance

Calabi-Yau n-folds, since the case of algebraic curves would render all second ex-

tensions trivial and thus any Yodeda product and its descent to sheaf cohomolgy

as worked out in Proposition 2.3 above will always yield trivial results; a conse-

quence of Grothendieck vanishing theorem [6]. Following [6], we will not be making

any distinction between classical projective n-space Pn
K over an algebraically closed

field K and its scheme theoretic interpretation, which comes equipped with scheme

morphism Proj(K[x0, x2, . . . , xn]) −→ Spec(K). The advantage of the latter is that

it helps make use of sheaf theoretic tools for (co)-homological computations. We

fix n = 3 and assume K = C (although much of what this paper presents is valid

for any K algebraically closed). Let ΩP3
C/C

denote the sheaf of differentials on P3
C,

OP3
C
(m) the structure sheaf of P3

C twisted m-times, for all m ∈ Z, by the twisting

sheaf of Serre and TP3
C
the corresponding tangent sheaf. Let Y be a quadric sur-

face in P3
C, then we know that Y can be realized as an image of Segre embedding

i : P1
C×P1

C −→ P3
C [5], with i∗ denoting the push-forward functor from Coh(P1

C×P1
C)

to Coh(P3
C). On the other hand, Y considered as a divisor in divisor class group

of P3
C has its associated line bundle representation, say L(DY ) ∈ Pic(P3

C) in Picard

group of P3
C, where DY ∈ Cl(P3

C) denotes the corresponding divisor to Y in the

divisor class group of P3
C which is parametrized by Z such that L(DY ) ≃ OP3

C
(−2)

[6]. For notational brevity, we drop the subscript for C. Then we have the following:

Proposition 2.4. Let α̃1 ∈ H2(P3, i∗(OP1×P1)(−6)) be the cocycle corresponding to

α1 ∈ Ext1(i∗(OP1×P1),OP3(−2)) determined by the short exact sequence

α1 : 0 −→ OP3(−2) −→ OP3 −→ i∗(OP1×P1) −→ 0
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and let α̃2 ∈ H2(P3, (i∗(i
∗(ΩP3(−4))))∨) be the cocycle corresponding to

α2 ∈ Ext1(TP3 , i∗(OP1×P1))

determined by the short exact sequence

α2 : 0 −→ i∗(OP1×P1) −→ (

i=4⊕
i=1

OP3(1))/OP3(−2) −→ (

i=4⊕
i=1

OP3(1))/OP3 −→ 0

then the Yoneda product as descended to sheaf cohomology in Proposition 2.3 above

yields

ỹ : H2(P3, i∗(OP1×P1)(−6))×H2(P3, (i∗(i
∗(ΩP3(−4)))∨) −→ H1(P3,ΩP3(−5))

such that the corresponding cohomology product α̃1ỹα̃2 = P (x0, . . . , x3)α̃2 = 0 ∈
H2(P3,ΩP3(−5)), amounts to multiplication by a degree 10 monomial P (x0, . . . , x3)

to produce a trivial cocycle in H1(P3,ΩP3(−5)).

Proof. Given that DY ∈ Cl(P3) corresponds to Y as a degree 2 divisor, it canon-

ically yields the short exact sequence α1, whereas α2 is obtained by dualizing

Euler-sequence corresponding to the sheaf of differentials on P3 and the filtration

OP3(−2) ( OP3 ( (
⊕i=4

i=1OP3(1)) [6]. Also from this fitlration and the fact that

coherent sheaves are locally nothing but finitely generated modules one can glue

the local data at the level of any chosen trivialization of, say P3, one obtains the

length 2 sequence as in Lemma 2.1. Then, since none of these sequences split, both

Ext1(i∗(OP1×P1),OP3(−2)) ̸= 0 and Ext1(TP3 , i∗(OP1×P1)) ̸= 0; we obtain

Ext1(i∗(OP1×P1),OP3(−2)) ≃ Ext2(OP3 , i∗(OP1×P1)(−6))

≃ H2(P3, i∗(OP1×P1)(−6))

≃ H2(P1 × P1,OP1×P1(−6))

≃ H0(P1 × P1,OP1×P1(3))

≃ S10(2.7)

where 3rd isomorphism is due to a corollary of Leray Spectral Sequence [8], and

the rest are the results from standard cohomology of projective space such that

S = C[x0, . . . x3] is the graded ring with S10 corresponding to the degree 10 part [6].

One similarly obtains
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Ext1(TP3 , i∗(OP1×P1) ≃ Ext2(OP3 , TP3 ⊗ i∗(OP1×P1)∨(−4))

≃ H1(P3, (ΩP3(−4)⊗ i∗(OP1×P1))∨)

≃ H1(P3, i∗(i
∗(ΩP3(−4)))∨).(2.8)

All of the above isomorphisms are standard algebraic geometric manipulations

[6]. Since double dual of any algebraic vector bundle is the bundle itself, one ob-

tains Ext2(TP3 ,OP3(−2)) ≃ H1(P3,ΩP3(−5)). Thus, applying Lemmas 2.1, 2.2 and

Proposition 2.3 on α1 and α2 and combining isomorphisms (2.7) and (2.8) above,

one obtains the result. �

2.1. Relevance with Mathematical Physics At this point, it would be ap-

propriate to discuss a connection between our calculations and results above with

its possible significant applications in mathematical physics. Following many recent

research developments, most notably in the domain of mirror symmetry, derived cat-

egories have become a very efficient tool in application of mathematical ideas. His-

torically, it started as a theory of duality between families of three-fold Calabi-Yau,

such that ifX and Y are any n-fold Calabi-Yau manifolds, then hp,q(X) = hn−p,q(Y ),

where hi,j(−) denotes the corresponding hodge numbers. It is the latter symmetry in

the hodge diamond that motivated the name (see for instance [10, 11] and [13]-[16]).

From this point onwards, let X be a Calabi-Yau n-fold which is algebraic. Then

M. Kontsovich in [11] proposes a definition of Hochschild cohomology for algebraic

varieties as

HH∗(OX) =: Ext∗X×X(O△X
,O△X

),

where △X : X −→ X ×X is the usual diagonal embedding of X in X ×X; which

is motivated from the corresponding definition

HH∗(R) = H(R,R) =: Ext∗R−mod−R(R,R),

such that R is an algebra over a field K considered as a bimodule over itself. Then

under the assumption that if R is the associative commutative algebra on TM, the

existence of which is guaranteed if TM corresponds to the tangent bundle of the

moduli space of formally Z-graded A∞-categories; one gets Hochschild cohomology

ring identified with Yoneda pairing that we discussed and used in our calculations

above, provided A∞-category contains only a single object with morphisms forming

an associated algebra R in degree-zero. These constructions are then combined with

further results to help build the famous homological-mirror-conjecture in [11] that

can be interpreted as stating that mirror symmetry is a derived equivalence between
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derived category associated to the Fukaya category and Db(X), with X being a

smooth complex projective variety.

3. Conclusion

Lemmas 2.1 and 2.2 present insight about internal structure of derived categories

D∗(A) in general. This is comparatively the algebraic side of this work. Proposition

2.3 presents the descent of Yoneda product from Ext groups to sheaf cohomology,

which may correspondingly be considered the more geometric side. Proposition 2.4

then connects all of these results in a very concrete projective geometric setting.

Section 2.1 discusses the relevance of these insights and calculations from the per-

spective of mathematical physics.

4. Statement of Conflict of Interest

It is hereby declared that there is no conflict of interest between the authors and

any third party.

Acknowledgment

The referees have reviewed the paper very carefully. The authors express their

deep thanks for the comments.

References

1. C. Bartocci, U. Bruzzo & D. H. Ruiperéz: Fourier-Mukai and Nahm Transforms in
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