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A WEIERSTRASS SEMIGROUP AT A PAIR OF INFLECTION
POINTS WITH HIGH MULTIPLICITIES

Seon Jeong Kim a and Eunju Kang b, ∗

Abstract. In the previous paper [4], we classified the Weierstrass semigroups at
a pair of inflection points of multiplicities d and d − 1 on a smooth plane curve of
degree d. In this paper, as a continuation of those results, we classify all semigroups
each of which arises as a Weierstrass semigroup at a pair of inflection points of
multiplicities d, d− 1 and d− 2 on a smooth plane curve of degree d.

1. Introduction and Preliminaries

Let C be a smooth projective curve of genus g ≥ 2, M(C) the field of rational
functions on C and N0 the set of all nonnegative integers.

For a point P on C, there are exactly g integers 1 = α1 < α2 < · · · < αg < 2g

such that there is no rational function f on C with a pole of order αk at P . The
integer αk is called a gap at P and the sequence {αk | k = 1, 2, · · · , g} is called as
the Weierstrass gap sequence at P . By the Riemann-Roch Theorem, we get

G(P ) = {α ∈ N0 | @f ∈M(C) with (f)∞ = αP}
= {α ∈ N0 | ∃ holomorphic differential on C of order α− 1 at P}
= {α ∈ N0 | ∃ canonical divisor on C of order α− 1 at P}

where (f)∞ means the divisor of poles of the rational function f . For a smooth plane
curve C of degree d ≥ 4, the canonical series is cut out by the system of all curves
of degree d− 3. So the order sequence of canonical divisors at P can be obtained as
the set {I(C ∩ fd−3, P ) | fd−3 is a polynomial of degree d− 3}.
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We call that P is a Weierstrass point if G(P ) 6= {1, 2, · · · , g} or equivalently the
order sequence of canonical divisors at P is not {0, 1 −→ g − 1}. There are only
finite number of Weierstrass points on C, which means that the order sequence of
canonical divisors at a point is exactly {0, 1 −→ g− 1} except for a finite number of
points.

The non-gaps at P form a semigroup under addition and we call it as the Weier-
strass semigroup H(P ). So H(P ) = N0\G(P ) = {α ∈ N0 | ∃f ∈M(C) with (f)∞ =
αP}. We extend the Weierstrass semigroup at P to a Werierstrass semogroup at
two distinct points P, Q ∈ C as H(P, Q) = {(α, β) ∈ N2

0 | ∃f ∈ M(C) with (f)∞ =
αP + βQ} and let G(P, Q) = N2

0 \H(P, Q).
As the cardinality of the set G(P ) is finite, in fact exactly g, the set G(P,Q) is

also finite, but its cardinality is dependent on the points P and Q. In [5], the first
author proved that the upper and lower bound of such sets are given as

(
g+2
2

)− 1 ≤
card G(P, Q) ≤ (

g+2
2

) − 1 − g + g2, and that H(P, Q) induces a bijection σ =
σ(P, Q) between G(P ) and G(Q) which is defined by σ(α) = βα := min{β | (α, β) ∈
H(P, Q)}. Homma [2] obtained the same formula for the cardinality of G(P, Q)
using the cardinality of the set {(α, α′) | α, α ∈ G(P ), (α − α′)(σ(α)− σ(α′)) < 0}
i.e., the set of pairs (α, α′) which are reversed by σ. We use the following notations;

Γ = Γ(P, Q) := {(α, βα) | α ∈ G(P )} = {(pi, qσ(i)) | i = 1, 2, · · · , g},
Γ̃ = Γ̃(P, Q) := Γ(P,Q) ∪ (

H(P )× {0}) ∪ ({0} ×H(Q)
)
.

The above set Γ(P,Q) is called the generating subset of the Weierstrass semigroup
H(P, Q). Indeed, for given distinct points P and Q, the set Γ(P, Q) determines not
only Γ̃(P, Q) but also the sets H(P, Q) and G(P, Q) completely, as described below.
We use the natural partial order on the set N2

0 as (α, β) ≥ (γ, δ) if and only if α ≥
γ and β ≥ δ. Also we define the least upper bound of two elements (α1, β1), (α2, β2)
is defined as lub{(α1, β1), (α2, β2)} = (max{α1, α2}, max{β1, β2}). In [5] and [6],
the following are proved: (1) The subset H(P, Q) of N2

0 is closed under the lub(least
upper bound) operation. (2) Every element of H(P, Q) is expressed as the lub of one
or two elements of the set Γ̃(P, Q). (3) The set G(P, Q) = N2

0 \H(P, Q) is expressed
as G(P,Q) =

⋃
l∈G(P )

({(l, β)|β = 0, 1, . . . , σ(l)−1}∪{(α, σ(l))|α = 0, 1, . . . , l−1}).
We can characterize the elements of Γ(P,Q) and H(P, Q) using the dimensions

of divisors. We denote dim(α, β) := dim |αP + βQ|, the dimension of the complete
linear series |αP + βQ|.
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Lemma 1.1. For α ≥ 1 and β ≥ 1, the pair (α, β) is an element of Γ(P, Q) [resp.
H(P, Q)] if and only if

dim(α, β) = dim(α− 1, β) + 1 = dim(α, β − 1) + 1 = dim(α− 1, β − 1) + 1

[resp. dim(α, β) = dim(α− 1, β) + 1 = dim(α, β − 1) + 1].

Proof. See [3]. ¤

Theorem 1.2. Let m ≥ 1, m′ ≥ 0, n′ ≥ n ≥ 1 and a ≥ 0 be integers. Suppose
that dim(s + m, t − n) = dim(s, t) + a for all s ≥ m′, t ≥ n′. Let α ≥ m′ + 1 and
β ≥ n′ + 1. Then (α + m,β − n) ∈ Γ(P, Q) [resp. (α + m,β − n) ∈ H(P, Q)] if and
only if (α, β) ∈ Γ(P,Q) [resp. (α, β) ∈ H(P, Q)].

Proof. It follows from Lemma 1.1. ¤

Theorem 1.3. Suppose that mP is linearly equivalent to mQ. If (α, β), (α+m,β′) ∈
Γ(P,Q), then β′ = β −m.

Proof. It follows from Theorem 1.2. ¤

When we prove the existence of a smooth plane curve with aligned inflection
points of given intersection multiplicities, we use the following theorem. Here Pd

denotes the set of all smooth plane curves of degree d, and i(T,C; P ) denotes the
intersection multiplicity of two curves T and C at the point P .

Theorem 1.4 ([1]). Fix a line L in P2 and different points P0, P1, . . . , Pd−e on L

with integers 0 ≤ e ≤ d. Fix lines T1, . . . , Td−e passing through P1, . . . , Pd−e different
from L. For a sequence m = (m1, . . . , md−e) with d ≥ m1 ≥ · · · ≥ md−e, let

P(e,m) = {C ∈ Pd |C is smooth, i(L, C; P0) = e,

i(Tj , C; Pj) = mj for 1 ≤ j ≤ d− e}.
Then P(e,m) is not empty if and only if the following condition holds:

For every j, 1 ≤ j < d− e, if mj+1 < mj then mj+1 ≤ d− j.

Let C be a smooth plane curve of degree d ≥ 4 and P a point on C. From now
on, TP C denotes the tangent line to C at a point P ∈ C and TP C ¦ C denotes the
divisor on C cut out by the line TP C. Also we use the notation iP C = i(TP C, C; P )
to denote the intersection multiplicity of the tangent line and C at P on C, which
satisfies that 2 ≤ iP C ≤ d. Recall that an inflection point P of a curve C means a
simple point with iP C ≥ 3.
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In [4], we completed the classification of the Weierstrass semigroups each of which
occurs at a pair of inflection points P, Q with iP C ≥ d− 1 and iQC ≥ d− 1.

In this paper, we will complete the classification of the Weierstrass semigroups
at pairs (P, Q) with iP C ≥ d − 2 and iQC ≥ d − 2. We find all candidates of the
Weierstrass semigroups at such a pair, and then prove the existence of curves and
points having such semigroups as their Weierstrass semigroups.

Considering the results of [4], we only need to deal with the following cases:

(1) iP C = d and iQC = d− 2.
(2) iP C = d− 1 and iQC = d− 2.
(3) iP C = d− 2 and iQC = d− 2.

Recall that, for a point P with iP C ≥ d− 2, the Weierstrass gap sequence G(P )
at P is uniquely determined as;

G(P ) = ∪d−3
k=0{k(d− t) + r | r = 1, . . . , d− 2− k}, t = 0, 1, 2

where iP C = d− t (See [1]). In the following sections, to obtain Γ(P,Q), we find a
bijection between G(P ) and G(Q). To do so, it is convenient to arrange the numbers
of G(P ) in a triangle shape as follows:

1 2 3 · · · · · · d− 3 d− 2
2 + (d− 1) 3 + (d− 1) · · · · · · d− 3 + (d− 1) d− 2 + (d− 1)

3 + 2(d− 1) · · · · d− 3 + 2(d− 1) d− 2 + 2(d− 1)

·
...

...
...

·
...

...
d− 3 + (d− 4)(d− 1) d− 2 + (d− 4)(d− 1)

d− 2 + (d− 3)(d− 1)

Table 1. G(P ) with iP C = d

1 2 3 · · · · · · d− 3 d− 2
1 + d 2 + d 3 + d · · · · · · d− 3 + d
...

...
... ·

...
... ·

1 + (d− 4)d 2 + (d− 4)d
1 + (d− 3)d

Table 2. G(P ) with iP C = d

Even though the shapes of arrays are different, we notice that
(the set of numbers in Table 1) = (the set of numbers in Table 2),
(the set of numbers in Table 3) = (the set of numbers in Table 4),
(the set of numbers in Table 5) = (the set of numbers in Table 6).
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1 2 3 · · · · · · d− 3 d− 2
2 + (d− 2) 3 + (d− 2) · · · · · · d− 3 + (d− 2) d− 2 + (d− 2)

·
...

...
...

·
...

...
d− 3 + (d− 4)(d− 2) d− 2 + (d− 4)(d− 2)

d− 2 + (d− 3)(d− 2)

Table 3. G(P ) with iP C = d− 1

1 2 3 · · · · · · d− 3 d− 2
1 + (d− 1) 2 + (d− 1) 3 + (d− 1) · · · · · · d− 3 + (d− 1)
.
..

.

..
.
.. ·

.

..
.
.. ·

1 + (d− 4)(d− 1) 2 + (d− 4)(d− 1)
1 + (d− 3)(d− 1)

Table 4. G(P ) with iP C = d− 1

1 2 3 · · · · · · d− 3 d− 2
2 + (d− 3) 3 + (d− 3) · · · · · · d− 3 + (d− 3) d− 2 + (d− 3)

·
..
.

..

.
..
.

·
...

...
d− 3 + (d− 4)(d− 3) d− 2 + (d− 4)(d− 3)

d− 2 + (d− 3)(d− 3)

Table 5. G(P ) with iP C = d− 2

1 2 3 · · · d− 3 d− 2
1 + (d− 2) 2 + (d− 2) 3 + (d− 2) · · · d− 3 + (d− 2)
1 + 2(d− 2) 2 + 2(d− 2) 3 + 2(d− 2) · · ·
...

...
... ·

...
... ·

1 + (d− 4)(d− 2) 2 + (d− 4)(d− 2)
1 + (d− 3)(d− 2)

Table 6. G(P ) with iP C = d− 2

2. At a Pair (P, Q) with iP C = d and iQC = d− 2

Let iP C = d and iQC = d − 2. Then we have TQC ¦ C = dP and TQC ¦ C =
(d−2)Q+R1+R2 for some (not necessarily distinct) points R1, R2 different from Q.
There are two possibilities: either {R1, R2} contains P or not. If {R1, R2} contains
P , then TQC ¦ C = (d− 2)Q + P + R with R 6= P,Q, since TP C 6= TQC.

Case 2-1. TQC ¦ C = (d− 2)Q + P + R with R 6= P, Q
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In this case, we have |dP | = |(d− 2)Q + P + R|, which is the linear series cut
out by the system of lines. Thus |(d− 1)P | = |(d− 2)Q + R|, which we donote
(d− 1)P ∼ (d− 2)Q + R.

Theorem 2.1. (i) For α ≥ 0, β ≥ d− 2,

dim(α + (d− 1), β − (d− 2)) = dim(α, β) + 1.

(ii) For α ≥ 1, β ≥ d− 1,

(α + (d− 1), β − (d− 2)) ∈ Γ(P, Q) ⇐⇒ (α, β) ∈ Γ(P, Q).

(iii) Such a curve and points exist.

Proof. Since (d− 1)P ∼ (d− 2)Q + R, we have

(α + (d− 1))P + (β − (d− 2))Q

∼ αP + (d− 2)Q + R + (β − (d− 2))Q = αP + βQ + R.

Thus R is not a base point of |αP + βQ + R|. Hence dim(α + (d− 1), β− (d− 2)) =
dim(α, β) + 1 and (i) is proved.

By Theorem 1.2, (ii) holds.
In Theorem 1.4, let e = d − 2, m = (d, d). Then P(d−2,m) is not empty and let

C ∈ P(d−2,m). Then P = P1, Q = P0 ∈ C satisfy the condition. ¤

Theorem 2.2. For P, Q as above, Γ(P, Q) is the set of all elements appeared in the
following Table 7:

(1, d− 2) (2, d− 3 + (d− 2)) · · · (d− 3, 2 + (d− 4)(d− 2)) (d− 2, 1 + (d− 3)(d− 2))
(2 + (d− 1), d− 3) · · · (d−3+(d−1), 1+(d−5)(d−2)) (d−2+(d−1), 1+(d−4)(d−2))

·
...

...

·
.
..
(d− 2 + (d− 3)(d− 1), 1)

Table 7. Γ(P, Q) when TP C ¦ C = dP and TQC ¦ C = (d− 2)Q + P + R

Proof. To use Theorem 2.1 (ii), we arrange the elements of G(P ) and G(Q) with
d− 2 columns and rows as in Table 1 and 6.

Note that the lengths of columns in the array in each of Table 1 and 6 are all
different. Also note that the sequence in each column of G(P ) is increasing by d− 1
and the sequence in each column of G(Q) is increasing by d− 2 .

By Theorem 2.1 (ii), (α + (d − 1), β − (d − 2)) ∈ Γ(P, Q) if and only if (α, β) ∈
Γ(P,Q). It means {α, α + (d − 1), · · · , α + k(d − 1)} ⊂ G(P ) if and only if {β, β −
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(d − 2), · · · , β − k(d − 1)} ⊂ G(Q). Thus if (α, β) ∈ Γ(P, Q) then α and β should
belong to the columns of same length in Table 1 and 6. Hence Γ(P, Q) is determined
as Table 7. ¤

Case 2-2. TQC ¦ C = (d− 2)Q + R1 + R2 with R1 + R2 � P

Theorem 2.3. (i) For α ≥ 0 and β ≥ d− 2,

dim(α + d, β − (d− 2)) = dim(α, β) + 2.

(ii) For α ≥ 1 and β ≥ d− 1,

(α + d, β − (d− 2)) ∈ Γ(P, Q) ⇐⇒ (α, β) ∈ Γ(P,Q).

(iii) Such a curve and points exist.

Proof. Note that R1 and R2 need not be distinct. When R1 6= R2 then let L1 be a
line passing through R1 but not containing R2 so L1 6= TQC. When R1 = R2 then
let L1 be a line passing through R1 such that L1 6= TQC. In both cases, we have
L1 ¦ C = R1 + S2 + · · ·+ Sd for points S2, . . . , Sd ∈ C with R2 6= Sj for all j. Since
dP ∼ (d− 2)Q + R1 + R2 ∼ L1 ¦ C, we have

(α + d)P + (β − (d− 2))Q

∼ αP + βQ + R1 + R2

∼ αP + (β − (d− 2))Q + L1 ¦ C.

Thus R1 is not a base point of the linear series |αP +βQ+R1 +R2| and R2 is not
a base point of the linear series |αP +βQ+R2| = |αP +(β−(d−2))Q+S2+· · ·+Sd|.
Hence

dim(α + d, β − (d− 2))

= dim |αP + βQ + R1 + R2|
= dim |αP + βQ + R2|+ 1

= dim(α, β) + 2.

Thus (i) is proved.
By Theorem 1.2, (ii) is proved.
In Theorem 1.4, let e = 0, m = (d, d − 2, · · · , d − 2). Then P(0,m) is not empty

and C ∈ P(0,m) contains P1, P2, · · · , Pd. Then P = P1, Q = P2 ∈ C satisfy the
condition. Therefore we get the result (iii). ¤
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Theorem 2.4. For P, Q as above, Γ(P, Q) is the set of all elements appeared in the
following Table 8 :

(1, 1 + (d− 3)(d− 2)) (2, 2 + (d− 4)(d− 2)) · · · (d−3, d−3+(d−2)) (d−2, d−2)
(1+d, 1+(d−4)(d−2)) (2+d, 2+(d−5)(d−2)) · · · (d−3+d, d−3)
...

... ·
(1 + (d− 4)d, 1 + (d− 2)) (2 + (d− 4)d, 2)
(1 + (d− 3)d, 1)

Table8. Γ(P, Q) when TP C¦C = dP and TQC¦C = (d−2)Q+R1+R2

with R1 + R2 � P

Proof. To use Theorem 2.3 (ii), we rearrange the elements of G(P ) and G(Q) with
d−2 columns and rows such that the sequence in each column of G(P ) is increasing
by d and the sequence in each column of G(Q) is increasing by d − 2. Then G(P )
and G(Q) can be represented as Table 2 and 6.

Note that the lengths of columns in the array in each of Table 2 and 6 are all
different. So in view of Theorem 2.3 (ii), if (α, β) ∈ Γ(P, Q) then α and β should
belong to the columns of same length in Table 2 and 6. The proof is similar to that
of Thoerem 2.2 and Γ(P, Q) is determined as Table 8. ¤

3. At a Pair (P, Q) with iP C = d− 1 and iQC = d− 2

In this case, there are points R1, R2, R3 ∈ C such that TP C ¦ C = (d− 1)P + R1

with R1 6= P and TQC ¦ C = (d − 2)Q + R2 + R3 with R2 + R3 � Q. There are 4
possible cases for points P , Q, and Ri

′s.
Case 3-1. R1 = Q (Then R2 + R3 � P since TP C 6= TQC.)
Case 3-2. R1 6= Q,R3 = P

Case 3-3. R1 6= Q,R1 = R3 6= P

Case 3-4. R1 6= Q,R2 + R3 � P,R2 + R3 � R1

We find Γ(P, Q) for each cases through this section.

Case 3-1. TP C ¦ C = (d − 1)P + Q and TQC ¦ C = (d − 2)Q + R2 + R3 with
R2 + R3 � P

Theorem 3.1. (i) For α ≥ 0, β ≥ d− 2,

dim(α + (d− 1), β − (d− 3)) = dim(α, β) + 2.
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(ii) For α ≥ 1, β ≥ d− 1,

(α + (d− 1), β − (d− 3)) ∈ Γ(P, Q) ⇐⇒ (α, β) ∈ Γ(P, Q).

(iii) Such a curve and points exist.

Proof. Let L1 be general line passing through R2 but not containing Q and L1 ¦C =
R2 + S2 + · · ·+ Sd with R2 6= Sj and R3 6= Sj for all j. Since (d− 1)P ∼ (d− 3)Q +
R2 + R3,

(α + (d− 1))P + (β − (d− 3))Q

∼ αP + βQ + R2 + R3

= αP + (β − (d− 2))Q + ((d− 2)Q + R2 + R3)

∼ αP + (β − (d− 2))Q + R2 + S2 + · · ·+ Sd.

Thus dim(α + (d− 1), β − (d− 3)) = dim(α, β) + 2 and (i) is proved.
By Theorem 1.2, (ii) is proved.
In Theorem 1.4, let e = d − 1, m = (d − 2). Then P(d−1,m) is not empty and

C ∈ P(d−1,m) contains P = P0, Q = P1 which satisfy the condition. Therefore we
get the result (iii). ¤

Theorem 3.2. For P, Q as above, Γ(P, Q) is the set of all elements appeared in the
following Table 9 :

(1, d− 2 + (d− 3)(d− 3)) (2, d− 3 + (d− 4)(d− 3)) · · · (d−3, 2+(d−3)) (d−2, 1)
(1+(d− 1), d− 2 +(d−4)(d−3)) (2+(d− 1), d− 3+(d−5)(d−3)) · · · (d−3+(d− 1), 2)
..
.

..

. ·
(1 + (d− 4)(d− 1), d− 2 + (d− 3)) (2 + (d− 4)(d− 1), d− 3)
(1 + (d− 3)(d− 1), d− 2)

Table 9. Γ(P, Q) when TP C ¦ C = (d − 1)P + Q and TQC ¦ C =
(d− 2)Q + R2 + R3 with R2 + R3 � P

Proof. We rearrange the elements of G(P ) and G(Q) with d− 2 columns and rows
such that the sequence in each column of G(P ) is increasing by d − 1 and the
sequence in each column of G(Q) is increasing by d− 3. Then G(P ) and G(Q) can
be represented as Table 4 and 5.

Note that the lengths of columns in the array in each of Table 4 and 5 are all
different. In view of Theorem 3.1 (ii), if (α, β) ∈ Γ(P,Q) then α and β should belong
to the columns of same length in Table 4 and 5. Hence Γ(P, Q) is determined as
Table 9. ¤
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Case 3-2. TP C ¦ C = (d − 1)P + R1 and TQC ¦ C = (d − 2)Q + R2 + P with
R1 6= R2

Theorem 3.3. (i) For α ≥ 0, β ≥ d− 2,

dim(α + (d− 2), β − (d− 2)) = dim(α, β).

(ii) For α ≥ 1, β ≥ d− 1,

(α + (d− 2), β − (d− 2)) ∈ Γ(P, Q) ⇐⇒ (α, β) ∈ Γ(P, Q).

(iii) Such a curve and points exist.

Proof. Since (d− 2)P + R1 ∼ (d− 2)Q + R2,

(α + (d− 2))P + (β − (d− 2))Q + R1 ∼ αP + βQ + R2.

Thus neither R1 nor R2 is a base point of the linear series

|(α + (d− 2))P + (β − (d− 2))Q + R1| = |αP + βQ + R2|.
Hence dim(α + (d− 2), β − (d− 2)) = dim(α, β) = dim |αP + βQ + R2| − 1.

Thus (i) is proved and by Theorem 1.2, (ii) is proved.
In Theorem 1.4, let e = d − 2, m = (d − 1, d − 1). Then P(d−2,m) is not empty

and C ∈ P(d−2,m) contains Q = P0, P = P1 which satisfy the condition. Therefore
we get the result (iii). ¤

Theorem 3.4. For P, Q as above, Γ(P, Q) is the set of all elements appeared in the
following Table 10:

(1, d− 2) (2, d− 3 + (d− 2)) · · · · · · (d− 3, 2 + (d− 4)(d− 2)) (d− 2, 1 + (d− 3)(d− 2))
(2 + (d− 2), d− 3) · · · · · · (d−3+(d−2), 1+(d−5)(d−2)) (d−2+(d−2), 1+(d−4)(d−2))

·
..
.

..

.
..
.

·
...

...
(d− 3 + (d− 4)(d− 2), 2) (d− 2 + (d− 4)(d− 2), 1 + (d− 2))

(d− 2 + (d− 3)(d− 2), 1)

Table 10. Γ(P, Q) when TP C ¦ C = (d − 1)P + R1 and TQC ¦ C =
(d− 2)Q + R2 + P , R1 6= R2

Proof. We use the array in Table 3 [resp. Table 6] as G(P ) [resp. G(Q)] since the
sequence in each column of Table 3 [resp. Table 6] is increasing by (d − 2) [resp.
(d− 2)]. Now the proof is similar to that of Theorem 3.2. By applying Theorem 3.3
(ii), we obtain Γ(P,Q). ¤
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Case 3-3. TP C ¦ C = (d− 1)P + R1 and TQC ¦ C = (d− 2)Q + R1 + R2

Theorem 3.5. (i) For α ≥ 0, β ≥ d− 2,

dim(α + (d− 1), β − (d− 2)) = dim(α, β) + 1.

(ii) For α ≥ 1, β ≥ d− 1,

(α + (d− 1), β − (d− 2)) ∈ Γ(P, Q) ⇐⇒ (α, β) ∈ Γ(P, Q).

(iii) Such a curve and points exist.

Proof. Since (d− 1)P ∼ (d− 2)Q + R2,

(α + (d− 1))P + (β − (d− 2))Q ∼ αP + βQ + R2.

Since R2 is not a base point of |αP + βQ + R2|, dim(α + (d − 1), β − (d − 2)) =
dim(α, β) + 1 holds. Thus (i) is proved.

By Theorem 1.2, (ii) is proved.
Modifying the idea in [1], we construct a desired polynomial of degree d. Consider

a linear system {ayd−2(y+x)z+b
∏d−1

n=0(x−nz) | (a, b) ∈ P1}. By Bertini’s theorem,
a general element in this system is smooth. In fact, easy calculation shows that
C := ayd−2(y+x)z+b

∏d−1
n=0(x−nz) is smooth and for P = (0, 0, 1) and Q = (1, 0, 1),

TP C = {x = 0} and TP Q = {x = z} satisfy the conditions. Note that R1 = (0, 1, 0)
is contained in all of C, TP C and TQC. Therefore we get the result (iii). ¤

Theorem 3.6. For P, Q as above, Γ(P, Q) is the set of all elements appeared in the
following Table 11.

(1, 1 + (d− 3)(d− 2)) (2, 2 + (d− 4)(d− 2)) · · · (d−3, d−3+(d−2)) (d−2, d−2)
(1+(d−1), 1+(d−4)(d−2)) (2+(d−1), 2+(d−5)(d−2)) · · · (d−3+(d−1), d−3)
...

... ·
(1 + (d− 4)(d− 1), 1 + (d− 2)) (2 + (d− 4)(d− 1), 2)
(1 + (d− 3)(d− 1), 1)

Table 11. Γ(P, Q) when TP C ¦ C = (d − 1)P + R1 and TQC ¦ C =
(d− 2)Q + R1 + R2

Proof. We use the array in Table 4 [resp. Table 6] as G(P ) [resp. G(Q)] since the
sequence in each column of Table 4 [resp. Table 6] is increasing by (d − 1) [resp.
(d− 2)]. Now the proof is similar to that of Theorem 3.2. By applying Theorem 3.5
(ii), we obtain Γ(P,Q). ¤
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Case 3-4. TP C ¦ C = (d− 1)P + R1, R1 6= Q and TQC ¦ C = (d− 2)Q + R2 + R3

with R2 + R3 � R1, P

Theorem 3.7. (i) For α ≥ 0, β ≥ d− 2,

dim(α + (d− 1), β − (d− 2)) = dim(α, β) + 1.

(ii) For α ≥ 1, β ≥ d− 1,

(α + (d− 1), β − (d− 2)) ∈ Γ(P, Q) ⇐⇒ (α, β) ∈ Γ(P, Q).

(iii) Such a curve and points exist.

Proof. Let L1 be a line passing through R2 differnet from TQC and L1 ¦ C ∼ R2 +
S2 + · · ·+ Sd with R2 6= Sj for all j. Then

(α + (d− 1))P + (β − (d− 2))Q + R1

∼ αP + βQ + R2 + R3

∼ αP + (β − (d− 2))Q + L1 ¦ C

∼ αP + (β − (d− 2))Q + R2 + S2 + · · ·+ Sd.

Thus R1 is not a base point of |αP + βQ + R2 + R3| and

dim(α + (d− 1), β − (d− 2))

= dim |(α + (d− 1))P + (β − (d− 2))Q + R1| − 1

= dim |αP + βQ + R2 + R3| − 1

= dim(α, β) + 1

since R2 is not a base point of

|αP + βQ + R2 + R3| = |(α + (d− 1))P + (β − (d− 2))Q + R1| ,
and R3 is not a base point of

|αP + βQ + R3| = |αP + (β − (d− 2))Q + S2 + · · ·+ Sd| .
Thus (i) is proved.

By Theorem 1.2, (ii) is proved.
In Theorem 1.4, let e = 0, m = (d − 1, d − 2, · · · , d − 2). Choose three lines

T1, T2, T3 which are not concurrent. Then P(0,m) is not empty and take C ∈ P(0,m)

which satisfy T1 ∩ T2 * C or T1 ∩ T3 * C, since T1 meet C at only one more point
other than P1. We may assume T1 ∩ T2 * C. Then P = P1 and Q = P2 ∈ C satisfy
the condition. Therefore we get the result (iii). ¤
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Theorem 3.8. For P, Q as above, Γ(P, Q) is the set of all elements appeared in the
Table 11 of Theorem 3.6.

Proof. We use the array in Table 4 [resp. Table 6] as G(P ) [resp. G(Q)] since the
sequence in each column of Table 4 [resp. Table 6] is increasing by (d − 1) [resp.
(d− 2)]. Now the proof is similar to that of Theorem 3.2. By applying Theorem 3.7
(ii), we obtain Γ(P,Q). ¤

4. At a Pair (P, Q) with iP C = d− 2 and iQC = d− 2

In this case, TP C ¦ C = (d− 2)P + R1 + R2 and TQC ¦ C = (d− 2)Q + S1 + S2.
There are 3 possible cases for points P , Q, Ri

′s and Si
′s :

Case 4-1. R2 = Q (Then S1 + S2 � P since TP C 6= TQC.)
Case 4-2. R1, R2, S1, S2 /∈ {P, Q}, R2 = S2

Case 4-3. R1, R2, S1, S2 /∈ {P, Q}, R1, R2 /∈ {S1, S2} (maybe R1 = R2 or S1 = S2)

Case 4-1. TP C ¦ C = (d− 2)P + R1 + Q and TQC ¦ C = (d− 2)Q + S1 + S2

Theorem 4.1. (i) For α ≥ 0, β ≥ d− 2,

dim(α + (d− 2), β − (d− 3)) = dim(α, β) + 1.

(ii) For α ≥ 1, β ≥ d− 1,

(α + (d− 2), β − (d− 3)) ∈ Γ(P, Q) ⇐⇒ (α, β) ∈ Γ(P, Q).

(iii) Such a curve and points exist.

Proof. Let L1 be a line passing through S1 different from TQC and L1 ¦ C = S1 +
U2 + · · ·+ Ud with S1 6= Uj for all j.

Since (d− 2)P + R1 ∼ (d− 3)Q + S1 + S2, we have

(α + (d− 2))P + (β − (d− 3))Q + R1

∼ αP + βQ + S1 + S2

∼ αP + (β − (d− 2))Q + S1 + U2 + · · ·+ Ud.

Hence

dim |(α + (d− 2))P + (β − (d− 3))Q|+ 1

= dim |(α + (d− 2))P + (β − (d− 3))Q + R1|
= dim |αP + βQ + S1 + S2|
= dim(α, β) + 2.
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Thus (i) is proved.
By Theorem 1.2, (ii) is proved.
In Theorem 1.4, let e = d − 2, m = (d − 2, d − 2). Then P(d−2,m) is not empty

and C ∈ P(d−2,m) contains P = P0, Q = P1 which satisfy the condition. Therefore
we get the result (iii). ¤

Theorem 4.2. For P, Q as above, Γ(P, Q) is the set of all elements appeared in the
following Table 12 :

(1, d− 2 + (d− 3)(d− 3)) (2, d− 3 + (d− 4)(d− 3)) · · · (d−3, 2+(d−3)) (d−2, 1)
(1+(d− 2), d− 2 +(d−4)(d−3)) (2+(d− 2), d− 3+(d−5)(d−3)) · · · (d−3+(d− 2), 2)
..
.

..

. ·
(1 + (d− 4)(d− 2), d− 2 + (d− 3)) (2 + (d− 4)(d− 2), d− 3)
(1 + (d− 3)(d− 2), d− 2)

Table12. Γ(P,Q) when TP C ¦C = (d−2)P +R1 +Q and TQC ¦C =
(d− 2)Q + S1 + S2

Proof. The proof is similar to the proof of Theorem 3.2. In this proof, we use Table
6 for G(P ) and Table 5 for G(Q). Then we obtain Γ(P, Q). ¤

Case 4-2. TP C ¦ C = (d− 2)P + R1 + R2 and TQC ¦ C = (d− 2)Q + S1 + R2

Theorem 4.3. (i) For α ≥ 0, β ≥ d− 2,

dim(α + (d− 2), β − (d− 2)) = dim(α, β).

(ii) For α ≥ 1, β ≥ d− 1,

(α + (d− 2), β − (d− 2)) ∈ Γ(P, Q) ⇐⇒ (α, β) ∈ Γ(P, Q).

(iii) Such a curve and points exist.

Proof. Since (d− 2)P + R1 ∼ (d− 2)Q + S1,

(α + (d− 2))P + (β − (d− 2))Q + R1 ∼ αP + βQ + S1.

Thus dim(α + (d− 2), β − (d− 2)) = dim(α, β).
By Theorem 1.2, (ii) is proved.
Consider a generic smooth curve C given in the proof of Theorem 3.5. Then

P = (1, 0, 1), Q = (2, 0, 1), R1 = (1,−1, 1), S1 = (2,−2, 1), R2 = (0, 1, 0) on C satisfy
the condition and (iii) is proved. ¤

Theorem 4.4. For P, Q as above, Γ(P, Q) is the set of all elements appeared in the
following Table 13 :
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(1, 1 + (d− 3)(d− 2)) (2, 2 + (d− 4)(d− 2)) · · · (d−3, d−3+(d−2)) (d−2, d−2)
(1+(d−2), 1+(d−4)(d−2)) (2+(d−2), 2+(d−5)(d−2)) · · · (d−3+(d−2), d−3)
.
..

.

..
(1 + (d− 4)(d− 2), 1 + (d− 2)) (2 + (d− 4)(d− 2), 2)
(1 + (d− 3)(d− 2), 1)

Table13. Γ(P,Q) when TP C ¦C = (d−2)P +R1+R2 and TQC ¦C =
(d− 2)Q + S1 + R2

Proof. The proof is similar to the proof of Theorem 3.2. In this proof, we use Table
6 for both G(P ) and G(Q). Then we obtain Γ(P, Q). ¤

Case 4-3. TP C ¦ C = (d− 2)P + R1 + R2 and TQC ¦ C = (d− 2)Q + S1 + S2

Theorem 4.5. (i) For α ≥ 0, β ≥ d− 2,

dim(α + (d− 2), β − (d− 2)) = dim(α, β).

(ii) For α ≥ 1, β ≥ d− 1,

(α + (d− 2), β − (d− 2)) ∈ Γ(P, Q) ⇐⇒ (α, β) ∈ Γ(P, Q).

(iii) Such a curve and points exist.

Proof. Let L1 be a line passing through R1 different from TP C and L1 ¦ C ∼ R1 +
R2

′+ · · ·+Rd
′ with R1 6= Rj

′ for all j. Let L2 be a line passing through S1 different
from TQC and S1 ¦ C ∼ S1 + S2

′ + · · ·+ Sd
′ with S1 6= Sj

′ for all j.
Since (d− 2)P + R1 + R2 ∼ (d− 2)Q + S1 + S2, we have

αP + (β − (d− 2))Q + R1 + R2
′ + · · ·+ Rd

′

∼ (α + (d− 2))P + (β − (d− 2))Q + R1 + R2

∼ αP + βQ + S1 + S2

∼ αP + (β − (d− 2))Q + S1 + S2
′ + · · ·+ Sd

′.

Hence

dim((α + (d− 2), β − (d− 2))

= dim |(α + (d− 2))P + (β − (d− 2))Q + R1 + R2| − 2

= dim |αP + βQ + S1 + S2| − 2

= dim(α, β).

By Theorem 1.2, (ii) is proved.
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In Theorem 1.4, let e = 0, m = (d−2, d−2, · · · , d−2). Then P(0,m) is not empty
and take C ∈ P(0,m). Then P = P1, Q = P2 ∈ C satisfy the condition. Therefore we
get the result (iii). ¤

Theorem 4.6. For P, Q as above, Γ(P, Q) is the same table as that in Theorem 4.4

Proof. The proof is same as that of Theorem 4.4. ¤

Acknowledgment

The first author was partially supported by the National Research Foundation of
Korea(NRF) grant funded by the Korea government(MSIT) (2022R1A2C1012291).

References

1. M. Coppens and T. Kato: The Weierstrass gap sequence at an inflection point on a
nodal plane curve, aligned inflection points on plane curves. Bollettino U.M.I. 7 (1997),
no. 11-B, 1-33.

2. M. Homma: The Weierstrass semigroup of a pair of points on a curve. Arch. Math. 67
(1996), 337-348.

3. E. Kang & S.J. Kim: Special pairs in the generating subset of the Weierstrass semigroup
at a pair. Geom. Dedicata 99 (2003), no. 1, 167-177.

4. E. Kang & S.J. Kim: A Weierstrass semigroup at a pair of inflection points on a smooth
plane curve. Bull. Korean Math. Soc. 44 (2007), no. 2, 369-378.

5. S.J. Kim: On the index of the Weierstrass semigroup of a pair of points on a curve.
Arch. Math. 62 (1994), 73-82.

6. S.J. Kim & J. Komeda: Weierstrass semigroups of pairs of points whose first non-gaps
are three. Geom. Dedicata 93 (2002), no. 2, 113-119.

aProfessor: Department of Mathematics and RINS, Gyeongsang National University,
Jinju 52828, Republic of Korea
Email address: skim@gnu.ac.kr

bProfessor: Department of Information and Communication Engineering, Honam Uni-
versity, Gwangju 62399, Republic of Korea
Email address: ejkang@honam.ac.kr


