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PARTIAL S-METRIC SPACES AND FIXED POINT RESULTS

Maryam Simkhah Asil a, Shaban Sedghi b and Jung Rye Lee c, ∗

Abstract. In this paper, we introduce the notion of partial S-metric space and
prove a common fixed point theorem in the respective setting. An example is pre-
sented to show the effectiveness of this approach.

1. Introduction and Preliminaries

Metrical fixed point theory became one of the most interesting area of research in
the last fifty years. A lot of fixed and common fixed point results have been obtained
by several authors in various types of spaces, such as metric spaces, fuzzy metric
spaces, uniform spaces and others see [1, 2, 3, 6, 7, 11, 13, 15, 16, 17]). One of the
most interesting spaces is a partial metric space, which was defined by Matthews in
the following way.

Definition 1.1 ([8]). A partial metric on a nonempty set X is a function p : X×X →
[0,+∞) such that, for all x, y, z ∈ X,

(p1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

In this case, the pair (X, p) is called a partial metric space.

On the other hand, S-metric spaces were initiated by Sedghi, Shobe and Aliouche
in [14] (see also [4] and references cited therein).
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Definition 1.2 ([14]). An S-metric on a nonempty set X is a function S : X×X×
X → [0, +∞) such that for all x, y, z, a ∈ X, the following conditions are satisfied:

(s1) S(x, y, z) = 0 ⇐⇒ x = y = z,
(s2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

In this case, the pair (X, S) is called an S-metric space.

It is easy to see that in S-metric space (X,S) we always have S(x, x, y) =
S(y, y, x), x, y ∈ X.

In this paper, combining these two concepts, we introduce the notion of par-
tial S-metric space and prove a common fixed point theorem for weakly increasing
mappings in ordered spaces of this kind.

We recall some notions and properties in S-metric spaces.

Definition 1.3 ([12]). Let (X,S) be an S-metric space and {xn} be a sequence
in X.

(a) The sequence {xn} converges to x ∈ X if S(xn, xn, x) → 0 as n → ∞. In
this case, we write limn→∞ xn = x.

(b) {xn} is said to be a Cauchy sequence if for each ε > 0, there exists n0 ∈ N
such that S(xn, xn, xm) < ε for all n,m ≥ n0.

(c) The space (X, S) is said to be complete if every Cauchy sequence in it con-
verges.

Lemma 1.4 ([12]). Let (X,S) be an S-metric space. If {xn} and {yn} are sequences
in X such that limn→∞ xn = x and limn→∞ yn = y, then

lim
n→∞S(xn, xn, yn) = S(x, x, y).

2. Partial S-metric Spaces

In this section, we introduce partial S-metric spaces and investigate some of their
simple properties.

Definition 2.1. A partial S-metric or modified partial S-metric on a nonempty set
X is a function S∗ : X ×X ×X → [0,+∞) such that for all x, y, z, a ∈ X,

(sp1) x = y = z ⇐⇒ S∗(x, y, z) = S∗(x, x, x) = S∗(y, y, y) = S∗(z, z, z),
(sp2) S∗(x, x, x) ≤ S∗(x, y, z),
(sp3) S∗(x, y, z) ≤ S∗(x, x, a) + S∗(y, y, a) + S∗(z, z, a)− 2S∗(a, a, a).
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The pair (X,S∗) is then called a partial or modified partial S-metric space.

Each S-metric space is also a modified partial S-metric space. The converse is
not true, as shown by the following example.

Example 2.2. Let X = [0, +∞) and let S∗ : X × X × X → [0, +∞) be defined
by S∗(x, y, z) = max{x, y, z}. Then, it is easy to check that (X,S∗) is a modified
partial S-metric space. Obviously, (X,S∗) is not an S-metric space.

Partial S-metric spaces was first introduced by N. Mlaiki in 2014 see [9]. However,
we introduced a generalization of partial S-metric spaces. That is due to the fact
that:

S∗(x, y, z) ≤ S∗(x, x, a) + S∗(y, y, a) + S∗(z, z, a)− 2S∗(a, a, a)

≤ S∗(x, x, a) + S∗(y, y, a) + S∗(z, z, a)− S∗(a, a, a).

Now, we present some example of such spaces, i. e. a partial S-metric space that
is not a modified partial S-metric space.

Example 2.3. Let X = [0,+∞) and let S∗ : X ×X ×X → [0, +∞) be defined by

S∗(x, y, z) =





5, x 6= y 6= z,

2, x = y 6= z,

1, x = y = z.

Then, it is easy to check that (X, S∗) is a partial S-metric space. Obviously, (X, S∗)
is not a modified partial S-metric space.

Lemma 2.4. For a modified partial S-metric S∗ on X, we have for all x, y ∈ X,

(a) S∗(x, x, y) = S∗(y, y, x),
(b) if S∗(x, x, y) = 0 then x = y.

Proof. (a) By the condition (sp3), we get
(i) S∗(x, x, y) ≤ S∗(x, x, x) + S∗(x, x, x) + S∗(y, y, x)− 2S∗(x, x, x) = S∗(y, y, x),

and similarly
(ii) S∗(y, y, x) ≤ S∗(y, y, y) + S∗(y, y, y) + S∗(x, x, y)− 2S∗(y, y, y) = S∗(x, x, y).

By (i) and (ii), we obtain S∗(x, x, y) = S∗(y, y, x).
(b) By the condition (sp2), we obtain
(iii) S∗(x, x, x) ≤ S∗(x, x, y) = 0,

and similarly by the relation (a), we also have:
(iv) S∗(y, y, y) ≤ S∗(y, y, x) = S∗(x, x, y) = 0.
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By (iii) and (iv), we get S∗(x, x, y) = S∗(x, x, x) = S∗(y, y, y) = 0, which by the
condition (sp1) implies that x = y. ¤

Remark 2.5. Dung, Hieu and Radojević [5, Examples 2.1 and 2.2] noted that the
class of S-metric spaces is incomparable with the class of G-metric spaces in the
sense of Mustafa and Sims [10]. The same examples show that the class of partial
S-metric spaces is incomparable with the class of GP -metric spaces in the sense of
Zand and Nezhad [18].

Definition 2.6. Let (X, S∗) be a partial S-metric space and {xn} be a sequence
in X.

(a) The sequence {xn} converges to x ∈ X (denoted as xn → x as n →∞) if

lim
n→∞S∗(xn, xn, x) = lim

n→∞S∗(xn, xn, xn) = S∗(x, x, x).

(b) The sequence {xn} is said to be a Cauchy sequence if there exists

lim
n,m→∞S∗(xn, xn, xm).

(c) The space (X, S∗) is complete if each Cauchy sequence in X converges.

Note that if xn → x as n →∞, then for each ε > 0 there exists n0 ∈ N such that

(2.1) |S∗(xn, xn, x)− S∗(x, x, x)| < ε, ∀n ≥ n0,

and

(2.2) |S∗(xn, xn, xn)− S∗(x, x, x)| < ε, ∀n ≥ n0.

Hence, for each ε > 0 there exists n0 ∈ N such that

(2.3) |S∗(xn, xn, xn)− S∗(xn, xn, x)| < ε, ∀n ≥ n0.

Lemma 2.7. Let (X, S∗) be a partial S-metric space. If a sequence {xn} in X

converges to x ∈ X, then x is unique.

Proof. Let {xn} converge to x and y. Then we have

(2.4) lim
n→∞S∗(xn, xn, xn) = lim

n→∞S∗(xn, xn, x) = S∗(x, x, x),

and

lim
n→∞S∗(xn, xn, xn) = lim

n→∞S∗(xn, xn, y) = S∗(y, y, y).
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By the condition (sp3), the relation (2.4) and Lemma 2.4, we obtain

S∗(x, x, y) ≤ 2S∗(x, x, xn) + S∗(y, y, xn)− 2S∗(xn, xn, xn)

= 2(S∗(xn, xn, x)− S∗(xn, xn, xn)) + S∗(xn, xn, y)− S∗(y, y, y) + S∗(y, y, y).

By taking the limit as n →∞, we get S∗(x, x, y) ≤ S∗(y, y, y).
Also, by the condition (sp2), we have S∗(y, y, y) ≤ S∗(y, y, x) = S∗(x, x, y). Hence

we obtain S∗(x, x, y) = S∗(y, y, y). Similarly, we have S∗(x, x, y) = S∗(x, x, x).
Therefore, from the condition (sp1), it follows that x = y. ¤

Lemma 2.8. Let (X,S∗) be a partial S-metric space. Then each convergent sequence
{xn} in X is a Cauchy sequence.

Proof. Let {xn} converge to x, that is, for each ε > 0 there exists n0 ∈ N such that
the inequalities (2.1), (2.2) and (2.3) hold for all n ≥ n0. By the condition (sp3) and
these inequalities, we have for m,n ≥ n0,

S∗(xn, xn, xm) ≤ S∗(xn, xn, x) + S∗(xn, xn, x) + S∗(xm, xm, x)− 2S∗(x, x, x)
(2.5)

≤ 2(S∗(xn, xn, x)− S∗(x, x, x)) + S∗(xm, xm, x)− S∗(x, x, x) + S∗(x, x, x)

< 2ε + ε + S∗(x, x, x).

Similarly, by the condition (sp3) and Lemma 2.7, we obtain

S∗(x, x, x) ≤ S∗(x, x, xn) + S∗(x, x, xn) + S∗(x, x, xn)− 2S∗(xn, xn, xn)(2.6)

= 2(S∗(xn, xn, x)− S∗(xn, xn, xn)) + S∗(x, x, xn)

≤ 2(S∗(xn, xn, x)− S∗(xn, xn, xn)) + 2S∗(x, x, xm)

+ S∗(xn, xn, xm)− 2S∗(xm, xm, xm).

< 2ε + 2ε + S∗(xn, xn, xm).

Hence, by (2.5) and (2.6), we get

|S∗(xn, xn, xm)− S∗(x, x, x)| < 4ε

for m,n ≥ n0. Thus limn,m→∞ S∗(xn, xn, xm) = S∗(x, x, x), and the sequence {xn}
is a Cauchy sequence. ¤

The notion of Sb-metric spaces was introduced independently in [13] and [16].

Definition 2.9. Let X be a nonempty set and b ≥ 1 be a given real number. An
Sb-metric on X, with a parameter b, is a function Sb : X ×X ×X → [0, +∞) such
that for all x, y, z, a ∈ X, the following conditions are satisfied:
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(sb1) Sb(x, y, z) = 0 ⇐⇒ x = y = z,
(sb2) Sb(x, x, y) = Sb(y, y, x),
(sb3) Sb(x, y, z) ≤ b(Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)).

In this case, the pair (X, Sb) is called an Sb-metric space.

A connection between partial S-metric and Sb-metric spaces is given by the fol-
lowing lemma.

Lemma 2.10. If (X, S∗) is a partial S-metric space, then Ss : X×X×X → [0, +∞),
given by

Ss(x, y, z) = S∗(x, x, y)+S∗(y, y, z)+S∗(z, z, x)−S∗(x, x, x)−S∗(y, y, y)−S∗(z, z, z),

is an Sb-metric on X, with a parameter b = 2.

Proof. First of all, by the condition (sp2) and the definition of Ss, we have Ss(x, y, z) ≥
0. Further, we check that the conditions of Definition 2.9 are fulfilled.

(sb1) If Ss(x, y, z) = 0 then it follows that S∗(x, y, z) = S∗(x, x, x) = S∗(y, y, y) =
S∗(z, z, z). That is, x = y = z. Conversely, if x = y = z, then we have Ss(x, y, z) =
0.

(sb2) By the definition of Ss and Lemma 2.4, we get

Ss(x, x, y) = S∗(x, x, x) + S∗(x, x, y) + S∗(y, y, x)− S∗(x, x, x)

− S∗(x, x, x)− S∗(y, y, y)

= S∗(x, x, x) + S∗(x, x, y) + S∗(x, x, y)− S∗(x, x, x)

− S∗(x, x, x)− S∗(y, y, y)

= 2S∗(x, x, y)− S∗(x, x, x)− S∗(y, y, y).

Similarly, we can show that

Ss(y, y, x) = 2S∗(x, x, y)− S∗(x, x, x)− S∗(y, y, y).

Therefore, Ss(x, x, y) = Ss(y, y, x). We always have that S∗(x, x, y) − S∗(x, x, x) ≤
Ss(x, x, y).

(sb3) By the condition (sp3) and Lemma 2.4, we obtain

Ss(x, y, z) = S∗(x, x, y) + S∗(y, y, z) + S∗(z, z, x)− S∗(x, x, x)

− S∗(y, y, y)− S∗(z, z, z)
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≤ 2S∗(x, x, a)− 2S∗(a, a, a) + S∗(y, y, a)

+ 2S∗(y, y, a)− 2S∗(a, a, a) + S∗(z, z, a)

+ 2S∗(z, z, a)− 2S∗(a, a, a) + S∗(x, x, a)

− S∗(x, x, x)− S∗(y, y, y)− S∗(z, z, z)

= 3S∗(a, a, x)− 2S∗(a, a, a)− S∗(x, x, x) + S∗(a, a, x)− S∗(x, x, x)

+ 3S∗(a, a, y)− 2S∗(a, a, a)− S∗(y, y, y) + S∗(a, a, y)− S∗(y, y, y)

+ 3S∗(a, a, z)− 2S∗(a, a, a)− S∗(z, z, z) + S∗(a, a, z)− S∗(z, z, z)

= 2[Ss(x, x, a) + Ss(y, y, a) + Ss(z, z, a)],

as desired. ¤

Lemma 2.11. Let (X, S∗) be a partial S-metric space and Ss be the respective
Sb-metric introduced in Lemma 2.10.

(a) A sequence {xn} in X is a Cauchy sequence in (X, S∗) if and only if it is a
Cauchy sequence in (X, Ss).

(b) The space (X, S∗) is complete if and only if the space (X, Ss) is complete.
Furthermore, limn→∞ Ss(xn, xn, x) = 0 if and only if

S∗(x, x, x) = lim
n→∞S∗(xn, xn, x) = lim

n,m→∞S∗(xn, xn, xm).

Proof. Let {xn} be a Cauchy sequence in (X,S∗). Then there exists

lim
n,m→∞S∗(xn, xn, xm) = lim

n→∞S∗(xn, xn, xn).

Since

Ss(xn, xn, xm) = 2S∗(xn, xn, xm)− S∗(xn, xn, xn)− S∗(xm, xm, xm),

we have

lim
n,m→∞Ss(xn, xn, xm)

= 2 lim
n,m→∞S∗(xn, xn, xm)− lim

n→∞S∗(xn, xn, xn)− lim
m→∞S∗(xm, xm, xm) = 0.

We conclude that {xn} is a Cauchy sequence in (X,Ss).
Next we prove that the completeness of (X, Ss) implies the completeness of

(X, S∗). Indeed, if {xn} is a Cauchy sequence in (X, S∗) then it is also a Cauchy
sequence in (X,Ss). Since the space (X, Ss) is complete, we deduce that there ex-
ists y ∈ X such that limn→∞ Ss(xn, xn, y) = 0 since Ss(xn, xn, y) = 2S∗(xn, xn, y)−
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S∗(y, y, y)− S∗(xn, xn, xn). Also, we know that

0 ≤ S∗(xn, xn, y)− S∗(y, y, y) < Ss(xn, xn, y),

and

0 ≤ S∗(xn, xn, y)− S∗(xn, xn, xn) < Ss(xn, xn, y).

Therefore, we have

lim
n→∞S∗(xn, xn, y) = lim

n→∞S∗(xn, xn, xn) = lim
n→∞S∗(y, y, y).

Hence, we get that {xn} is a convergent sequence in (X,S∗).
Now we prove that every Cauchy sequence {xn} in (X, Ss) is a Cauchy sequence

in (X, S∗). Let ε =
1
2
. Then there exists n0 ∈ N such that Ss(xn, xn, xm) <

1
2

for
all n,m ≥ n0. Since

S∗(xn, xn, xn)

≤ 4S∗(xn0 , xn0 , xn)− 3S∗(xn, xn, xn)− S∗(xn0 , xn0 , xn0) + S∗(xn, xn, xn)

≤ 2Ss(xn, xn, xn0) + S∗(xn0 , xn0 , xn0),

we get

S∗(xn, xn, xn) ≤ 2Ss(xn, xn, xn0) + S∗(xn0 , xn0 , xn0)

≤ 1 + S∗(xn0 , xn0 , xn0).

Consequently, the sequence {S∗(xn, xn, xn)} is bounded in R and so there exists
an α ∈ R such that the subsequence {S∗(xnk

, xnk
, xnk

)} is convergent to α, i.e.,
limk→∞ S∗(xnk

, xnk
, xnk

) = α.
It remains to prove that {S∗(xn, xn, xn)} is a Cauchy sequence in R. Since

{xn} is a Cauchy sequence in (X, Ss), for given ε > 0, there exists nε such that
Ss(xn, xn, xm) <

ε

2
for all n,m ≥ nε. Thus, for all n,m ≥ nε,

|S∗(xn, xn, xn)− S∗(xm, xm, xm)|
≤ 4S∗(xn, xn, xm)− 3S∗(xn, xn, xn)− S∗(xm, xm, xm)

+ S∗(xn, xn, xn)− S∗(xm, xm, xm)

≤ 2Ss(xn, xn, xm) < ε.

On the other hand,

|S∗(xn, xn, xn)− α| ≤ |S∗(xn, xn, xn)− S∗(xnk
, xnk

, xnk
)|+ |S∗(xnk

, xnk
, xnk

)− α|
< ε + ε = 2ε
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for all n, nk ≥ nε. Hence limn→∞ S∗(xn, xn, xn) = α. Now,

|2S∗(xn, xn, xm)− 2α| = |Ss(xn, xn, xm) + S∗(xn, xn, xn)− α + S∗(xm, xm, xm)− α|
≤ Ss(xm, xm, xm) + |S∗(xn, xn, xn)− α|+ |S∗(xm, xm, xm)− α|
<

ε

2
+ 2ε + 2ε =

9
2
ε.

Therefore, {xn} is a Cauchy sequence in (X, S∗).
In order to complete the proof, we have to prove that (X, Ss) is complete if

(X, S∗) is complete. Let {xn} be a Cauchy sequence in (X, Ss). Then {xn} is a
Cauchy sequence in (X, S∗) and so it is convergent to a point y ∈ X with

lim
n,m→∞S∗(xn, xn, xm) = lim

n→∞S∗(y, y, xn) = S∗(y, y, y).

Thus, given ε > 0, there exists nε ∈ N such that

|S∗(y, y, xn)− S∗(y, y, y)| < ε

2
and |S∗(y, y, y)− S∗(xn, xn, xn)| < ε

2
,

whenever n ≥ nε. Hence we have

Ss(y, y, xn) = 2S∗(y, y, xn)− S∗(xn, xn, xn)− S∗(y, y, y)

≤ |S∗(y, y, xn)− S∗(y, y, y)|+ |S∗(y, y, xn)− S∗(xn, xn, xn)|
<

ε

2
+

ε

2
= ε,

whenever n ≥ nε. Therefore (X,Ss) is complete.
Finally, it is a simple matter to check that limn→∞ Ss(a, a, xn) = 0 if and only if

S∗(a, a, a) = lim
n→∞S∗(a, a, xn) = lim

n,m→∞S∗(xn, xn, xm).

This completes the proof. ¤

Lemma 2.12. Let {xn} and {yn} be two convergent sequences to x ∈ X and y ∈ X,
respectively, in a partial S-metric space (X, S∗). Then

lim
n→∞S∗(xn, yn, yn) = S∗(x, y, y).

In particular, limn→∞ S∗(xn, yn, z) = S∗(x, y, z) for every z ∈ X.

Proof. By the assumptions, for each ε > 0 there exists n0 ∈ N such that

|S∗(xn, xn, x)− S∗(x, x, x)| < ε

4
, |S∗(yn, yn, y)− S∗(y, y, y)| < ε

4
,

|S∗(xn, xn, xn)− S∗(x, x, x)| < ε

4
, |S∗(yn, yn, yn)− S∗(y, y, y)| < ε

4
,

|S∗(xn, xn, xn)− S∗(xn, xn, x)| < ε

4
, |S∗(yn, yn, yn)− S∗(yn, yn, y)| < ε

4
,
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hold for all n ≥ n0. By the condition (sp3), for n ≥ n0, we have

S∗(xn, xn, yn) ≤ S∗(xn, xn, x) + S∗(xn, xn, x) + S∗(yn, yn, x)− 2S∗(x, x, x)

≤ S∗(xn, xn, x) + S∗(xn, xn, x) + S∗(yn, yn, y) + S∗(yn, yn, y)

+ S∗(x, x, y)− 2S∗(y, y, y)− 2S∗(x, x, x)

<
ε

4
+

ε

4
+

ε

4
+

ε

4
+ S∗(x, x, y),

and so we obtain

S∗(xn, xn, yn)− S∗(x, x, y) < ε.

Also,

S∗(x, x, y) ≤ S∗(x, x, xn) + S∗(x, x, xn) + S∗(y, y, xn)− 2S∗(xn, xn, xn)

≤ S∗(x, x, xn) + S∗(x, x, xn) + S∗(y, y, yn) + S∗(y, y, yn)

+ S∗(xn, xn, yn)− 2S∗(yn, yn, yn)− 2S∗(xn, xn, xn)

<
ε

4
+

ε

4
+

ε

4
+

ε

4
+ S∗(xn, xn, yn).

Thus

S∗(x, x, y)− S∗(xn, xn, yn) < ε.

Hence for all n ≥ n0, we get |S∗(xn, xn, yn)− S∗(x, x, y)| < ε and the result follows.
¤

Lemma 2.13. If (X,S∗) is a partial S-metric space, then the Sb-metrics Ss (defined
in Lemma 2.10) and Sm : X ×X ×X → R+ given by

Sm(x, y, z) = max





2S∗(x, x, y)− S∗(x, x, x)− S∗(y, y, y),
2S∗(y, y, z)− S∗(y, y, y)− S∗(z, z, z),
2S∗(z, z, x)− S∗(z, z, z)− S∗(x, x, x)





for all x, y, z ∈ X, are equivalent.

Proof. It is easy to see that Sm is an Sb-metric on X. Let x, y, z ∈ X. It is obvious
that

Sm(x, y, z) ≤ 2Ss(x, y, z).

On the other hand, since a + b + c ≤ 3max{a, b, c}, it follows that

Ss(x, y, z) = S∗(x, x, y) + S∗(y, y, z) + S∗(z, z, x)− S∗(x, x, x)

− S∗(y, y, y)− S∗(z, z, z)



PARTIAL S-METRIC SPACES AND FIXED POINT RESULTS 411

=
1
2
[2S∗(x, x, y)− S∗(x, x, x)− S∗(y, y, y)]

+
1
2
[2S∗(y, y, z)− S∗(y, y, y)− S∗(z, z, z)]

+
1
2
[2S∗(z, z, x)− S∗(z, z, z)− S∗(x, x, x)]

≤ 3
2

max





2S∗(x, x, y)− S∗(x, x, x)− S∗(y, y, y),
2S∗(y, y, z)− S∗(y, y, y)− S∗(z, z, z),
2S∗(z, z, x)− S∗(z, z, z)− S∗(x, x, x)





=
3
2
Sm(x, y, z).

Thus we have
1
2
Sm(x, y, z) ≤ Ss(x, y, z) ≤ 3

2
Sm(x, y, z).

These inequalities imply that Ss and Sm are equivalent. ¤

Lemma 2.14. Let (X, S∗) be a partial S-metric space. Define a relation ∼ on X

as follows:

x ∼ y ⇐⇒ S∗(x, x, y) = S∗(x, x, x).

Then ∼ is an equivalence relation on X.

Proof. (i) It is easy to see that x ∼ x.
(ii) Let x ∼ y and y ∼ x. Then S∗(x, x, y) = S∗(x, x, x) and S∗(y, y, x) =

S∗(y, y, y). Since S∗(x, x, y) = S∗(y, y, x),

S∗(x, x, x) = S∗(x, x, y) = S∗(y, y, y),

and by the condition (sp1) we have x = y.
(iii) Let x ∼ y and y ∼ z, and so S∗(x, x, y) = S∗(x, x, x) and S∗(y, y, z) =

S∗(y, y, y). So

S∗(x, x, z) = S∗(z, z, x) ≤ 2S∗(z, z, y) + S∗(x, x, y)− 2S∗(y, y, y)

= 2S∗(y, y, z) + S∗(x, x, x)− 2S∗(y, y, y)

= S∗(x, x, x).

Hence, by (sp2), we get S∗(x, x, x) ≤ S∗(x, x, z). So S∗(x, x, z) = S∗(x, x, x), that
is, x ∼ z. ¤
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3. A Common Fixed Point Result in Ordered Partial S-metric
Spaces

In what follows, we will consider the following special type of partial S-metric
spaces.

Definition 3.1. A partial S-metric space (X, S∗) is said to be of the first type if for
all x, y, z ∈ X

S∗(x, x, y) ≤ min{S∗(x, y, z), S∗(z, x, y)}
holds.

It is easy to check that the partial S-metric space of Example 2.2 is of the first
type.

Definition 3.2 ([1]). Let (X,¹) be a partially ordered set and S, T : X → X be
two mappings. The pair (S, T ) is said to be partially weakly increasing if Sx ¹ TSx

holds for each x ∈ X.

In the sequel, we use the following notations.
(i) F denotes the set of all functions F : [0,∞) → [0,∞) such that F is nonde-

creasing, continuous, F (0) = 0 < F (t) for each t > 0 and F (x + y) ≤ F (x) + F (y)
for all x, y ∈ [0,+∞);

(ii) Ψ denotes the set of all functions ψ : [0,∞) → [0,∞) such that ψ is con-
tinuous, nondecreasing and

∑∞
n=0 ψn(t) is convergent for each t > 0. From the

conditions on ψ, it is clear that limn→∞ ψn(t) = 0 and ψ(t) < t for each t > 0.
The following theorem is the main result of this section.

Theorem 3.3. Let (X,¹) be a partially ordered set and suppose that there exists
a first type partial S-metric S∗ on X such that (X,S∗) is a complete partial S-
metric space. Let S, T, R : X → X be mappings such that the pairs (S, T ), (T, R)
and (R, S) are partially weakly increasing and for some F ∈ F , ψ ∈ Ψ and all
x, y, z ∈ X, comparable in pairs with respect to ¹, the inequality

(3.1) F (S∗(Sx, Ty, Rz)) ≤ ψ(F (ϕ(x, y, z)))

holds, where

(3.2) ϕ(x, y, z) = max {S∗(x, y, z), S∗(x, x, Sx), S∗(y, y, Ty), S∗(z, z, Rz)} .
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Further, assume that for every nondecreasing sequence {xn} in X, converging to
x ∈ X, we have xn ¹ x.

Then S, T and R have a common fixed point.

Proof. Let x0 be an arbitrary point in X. Define a sequence {xn} in X as follows:

x3n+1 = Sx3n, x3n+2 = Tx3n+1 and x3n+3 = Rx3n+2 for n = 0, 1, . . . .

Since the pairs (S, T ), (T,R) and (R, S) are partially weakly increasing, we have

x1 = Sx0 ¹ TSx0 = x2 = Tx1 ¹ RTx1 = x3 = Rx2 ¹ SRx2 = x4,

and continuing this process we have

x1 ¹ x2 ¹ · · · ¹ xn ¹ xn+1 ¹ · · · .

Consider, first of all, the case when there exists n0 ∈ N such that
S∗(x3n0 , x3n0+1, x3n0+2) = 0. We will show also that S∗(x3n0+1, x3n0+2, x3n0+3) = 0.
Indeed, otherwise, from (3.1), we get

F (S∗(x3n0+2, x3n0+2, x3n0+3)) ≤ F (S∗(x3n0+1, x3n0+2, x3n0+3))

= F (S∗(Sx3n0 , Tx3n0+1, Rx3n0+2))

≤ ψ(F (ϕ(x3n0 , x3n0+1, x3n0+2)))

= ψ(F (S∗(x3n0+2, x3n0+2, x3n0+3)))

< F (S∗(x3n0+2, x3n0+2, x3n0+3)),

which is a contradiction. Hence S∗(x3n0+1, x3n0+2, x3n0+3) = 0. Therefore, x3n0 =
x3n0+1 = x3n0+2 = x3n0+3 and thus Sx3n0 = Tx3n0 = Rx3n0 = x3n0 . That is, x3n0

is a common fixed point of S, T and R.
Assume now that S∗(x3n, x3n+1, x3n+2) > 0 for all n ∈ N. We will prove that

(3.3) F (S∗(xn−1, xn, xn+1)) ≤ ψ(F (S∗(xn−2, xn−1, xn))).

Setting x = x3n, y = x3n+1 and z = x3n+2 in (3.2), we obtain

ϕ(x3n, x3n+1, x3n+2) = max
{

S∗(x3n, x3n+1, x3n+2), S∗(x3n, x3n, x3n+1),
S∗(x3n+1, x3n+1, x3n+2), S∗(x3n+2, x3n+2, x3n+3)

}
.

Since S∗ is of the first type, we get

ϕ(x3n, x3n+1, x3n+2) ≤ max{S∗(x3n, x3n+1, x3n+2), S∗(x3n+1, x3n+2, x3n+3)}.
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If S∗(x3n+1, x3n+2, x3n+3) is the maximum in the above inequality, we have from
(3.1) that

F (S∗(x3n+1, x3n+2, x3n+3)) = F (S∗(Sx3n, Tx3n+1, Rx3n+2))

< ψ(F (ϕ(x3n, x3n+1, x3n+2)))

≤ ψ
(
F (max{S∗(x3n, x3n+1, x3n+2), S∗(x3n+1, x3n+2, x3n+3)})

)

= ψ
(
F (S∗(x3n+1, x3n+2, x3n+3))

)

< F (S∗(x3n+1, x3n+2, x3n+3)),

which is a contradiction. Thus

F (S∗(x3n+1, x3n+2, x3n+3)) ≤ ψ(F (S∗(x3n, x3n+1, x3n+2))).

Similarly, we obtain

F (S∗(x3n+2, x3n+3, x3n+4)) ≤ ψ(F (S∗(x3n+1, x3n+2, x3n+3))),

and

F (S∗(x3n, x3n+1, x3n+2)) ≤ ψ(F (S∗(x3n−1, x3n, x3n+1))).

Therefore, for every n ∈ N, we have

F (S∗(xn, xn+1, xn+2)) ≤ ψ(F (S∗(xn−1, xn, xn+1)))

≤ . . .

≤ ψn(F (S∗(x0, x1, x2))).

Hence limn→∞ F (S∗(xn, xn+1, xn+2)) = 0 and so

(3.4) lim
n→∞S∗(xn, xn+1, xn+2) = 0.

Since S∗ is of the first type and F is nondecreasing, we obtain

F (S∗(xn, xn, xn+1)) ≤ F (S∗(xn, xn+1, xn+2))

≤ ψnF (S∗(x0, x1, x2))).

Since F (x + y) ≤ F (x) + F (y) and Ss(xn, xn, xn+1) ≤ 2S∗(xn, xn, xn+1), we have

F (Ss(xn, xn, xn+1)) ≤ 2F (S∗(xn, xn, xn+1)) ≤ 2ψn(F (S∗(x0, x1, x2))).
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Now from Ss(xn+k, xn+k, xn) ≤ 2Ss(xn+k, xn+k, xn+k−1)+ · · ·+2Ss(xn+1, xn+1, xn),
we get

F (Ss(xn+k, xn+k, xn)) ≤ F (2Ss(xn+k, xn+k, xn+k−1)) + · · ·+ F (2Ss(xn+1, xn+1, xn))

≤ 2ψn+k(S∗(x0, x1, x2)) + · · ·+ 2ψn+1(S∗(x0, x1, x2))

≤ 2
∞∑

i=n

ψi(S∗(x0, x1, x2)).

Since
∑∞

n=1 ψn(t) is convergent for each t > 0, it follows that {xn} is a Cauchy
sequence in the Sb-metric space (X, Ss). Since (X, S∗) is complete, it follows from
Lemma 2.11 that the sequence {xn} converges to some x in the Sb-metric space
(X, Ss). Hence

lim
n→∞Ss(xn, xn, x) = 0.

Again, from Lemma 2.11, we have

(3.5) S∗(x, x, x) = lim
n→∞S∗(xn, xn, x) = lim

n,m→∞S∗(xn, xn, xm).

Since {xn} is a Cauchy sequence in the Sb-metric space (X, Ss) and

Ss(xn, xn, xm) = 2S∗(xn, xn, xm)− S∗(xn, xn, xn)− S∗(xm, xm, xm),

we obtain

lim
n,m→∞Ss(xn, xn, xm) = 0,

and from (3.4), it follows that

lim
n→∞S∗(xn, xn, xn) = 0.

Thus by the definition of Ss we have

lim
n,m→∞S∗(xn, xn, xm) = 0.

Therefore by (3.5), we obtain

S∗(x, x, x) = lim
n→∞S∗(xn, xn, x) = lim

n,m→∞S∗(xn, xn, xm) = 0.

Now, from the inequality (3.1) for x = x, y = x3n+1 and z = x3n+2, we get

F (S∗(Sx, x3n+2, x3n+3)) ≤ ψ(F (ϕ(x, x3n+1, x3n+2)).

Letting n →∞ and using Lemma 2.12, we obtain

F (S∗(Sx, x, x)) ≤ ψ(F (S∗(Sx, x, x)) < F (S∗(Sx, x, x)),

which is a contradiction. Hence S∗(Sx, x, x) = 0. Thus Sx = x.
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Similarly, by using the inequality (3) for y = x, x = x3n and z = x3n+2, we get

F (S∗(x3n, Tx, x3n+3)) ≤ ψ(F (ϕ(x3n, x, x3n+2)),

and letting n →∞ and using Lemma 2.12, we obtain

F (S∗(x, Tx, x)) ≤ ψ(F (S∗(x, Tx, x)) < F (S∗(x, Tx, x)),

which is a contradiction. Hence S∗(x, Tx, x) = 0. Thus Tx = x.
In a similar manner, applying the inequality (3.1) for z = x, x = x3n and y =

x3n+1, we can show that Rx = x. ¤

Taking S = T = R in Theorem 3.3, one obtains the following

Corollary 3.4. Let (X,¹) be a partially ordered set and suppose that there exists a
first type partial S-metric S∗ on X such that (X, S∗) is a complete partial S-metric
space. Let T : X → X be a mapping such that Tx ¹ T 2x for x ∈ X and

(3.6) F (S∗(Tx, Ty, Tz)) ≤ ψ(F (ϕ(x, y, z)))

for all x, y, z ∈ X with x, y, z comparable in pairs with respect to the partial order
¹, where F ∈ F , ψ ∈ Ψ and

ϕ(x, y, z) = max {S∗(x, y, z), S∗(x, x, Tx), S∗(y, y, Ty), S∗(z, z, Tz)} .

Further, assume that for every increasing sequence {xn} in X, converging to x ∈ X,
we have xn ¹ x.

Then T has a fixed point.

Now, we present an example which supports Corollary 3.4 and shows that the
obtained fixed point results can be applied in the situations when some other known
results fail.

Example 3.5. Let X = [0,∞) be equipped with the first type S-metric S∗(x, y, z) =
max{x, y, z} and the partial order ¹ be defined by

x ¹ y ⇐⇒ x = y ∨ 0 ≤ y ≤ x ≤ 1.

Consider the mapping T : X → X defined by

Tx =





x2

2(1 + x)
, 0 ≤ x ≤ 1,

x, x > 1.
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Choose F ∈ F and ψ ∈ Ψ by F (t) = t and

ψ(t) =





t2

1 + t
, 0 ≤ t ≤ 1,

t

2
, t > 1.

We will check that the conditions of Corollary 3.4 are fulfilled.
First of all, Tx ¹ T 2x holds for x ∈ X (indeed, for 0 ≤ x ≤ 1 this reduces to

x4

4(1 + x)(x2 + 2x + 2)
≤ x2

2(1 + x)
,

and is trivial for x > 1). Let, further, x, y, z be comparable in pairs w.r.t. ¹, e.g.,
x ¹ y ¹ z. The only nontrivial case to consider is when 0 ≤ z ≤ y ≤ x ≤ 1. Then

S∗(Tx, Ty, Tz) = max
{

x2

2(1 + x)
,

y2

2(1 + y)
,

z2

2(1 + z)

}
=

x2

2(1 + x)
,

and

ϕ(x, y, z) = max {max{x, y, z},max{x, Tx}, max{y, Ty}, max{z, Tz}} = x.

Hence, the condition (3.6) reduces to

x2

2(1 + x)
≤ x2

1 + x
,

which is satisfied for 0 ≤ x ≤ 1. By Corollary 3.4, the mapping T has a fixed point
(which is 0). Note that, if the same problem is considered in one of usual S-metrics
on X:

S(x, y, z) = max{|x− y|, |y − z|, |z − x|},
then the conclusion cannot be obtained in a similar way. Namely, if one takes x = 1

and y = z =
3
4

(and the same functions F and ψ as before), then the inequality

(3.6) (with S instead of S∗) would reduce to
5
56

<
1
20

, which is false. Also, if the
problem is considered in the space without partial order, the condition would also
not be satisfied.
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5. N.V. Dung, N.T. Hieu & S. Radojević: Fixed point theorems for g-monotone maps on
partially ordered S-metric spaces. Filomat 28 (2014), 1885-1898.

6. J.H. Jo: Some generalizations of fixed point theorems and common fixed point theorems.
J. Fixed Point Theory Appl. 20 (2018), No. 4, Art. No. 144.

7. X. Liu, M. Zhou, L.N. Mishra, V.N. Mishra & B. Damjanović: Common fixed point
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