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UTILIZING GENERALIZED MEIR-KEELER CONTRACTION

IN PERIODIC BOUNDARY VALUE PROBLEMS

Amrish Handa

Abstract. This manuscript is divided into three segments. In the first segment,
we formulate a unique common fixed point theorem satisfying generalized Meir-
Keeler contraction on partially ordered metric spaces and also give an example
to demonstrate the usability of our result. In the second segment of the article,
some common coupled fixed point results are derived from our main results. In the
last segment, we investigate the solution of some periodic boundary value problems.
Our results generalize, extend and improve several well-known results of the existing
literature.

1. Introduction

Banach contraction mapping principle has been generalized in several directions,

One of these generalizations, known as the Meir-Keeler fixed point theorem [16]. In

[17], Samet established the coupled fixed points of mixed strict monotone generalized

Meir-Keeler operators and also established the existence and uniqueness results for

coupled fixed point. Berinde and Pecurar [2] obtained more general coupled fixed

point theorems for mixed monotone operators F : X2 → X satisfying a generalized

Meir-Keeler contractive condition.

On the other hand, the idea of the coupled fixed point was initiated by Guo and

Lakshmikantham [11] in 1987. Following this paper, Gnana-Bhaskar and Laksh-

mikantham [3] introduced the notion of mixed monotone property for F : X2 → X

in a partially ordered metric space and utilized the same to prove some theorems

on the existence and uniqueness of coupled fixed points. In 2009, Lakshmikantham

and Ciric [15] generalized these results for nonlinear contraction mappings by intro-

ducing the notions of coupled coincidence point and mixed g−monotone property.
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Subsequently, Choudhury and Kundu [4] introduced the notion of compatibility and

using this notion, they improve the results of Lakshmikantham and Ciric [15], then

after several authors established coupled fixed/coincidence point theorems by using

this notion. Some of our fundamental sources are given in [1, 6, 7, 8, 9, 10, 12, 18].

In this manuscript, we prove a common fixed point theorem satisfying general-

ized Meir-Keeler contraction on partially ordered metric spaces. With the help of

obtained result, we derive a common coupled fixed point result. As an application,

we investigate the solution of periodic boundary value problems. We also give an

example to show the fruitfulness of our results. We generalize, sharpen and mod-

ify the results of Berinde and Pecurar [2], Gnana-Bhaskar and Lakshmikantham [3],

Lakshmikantham and Ciric [15],Meir and Keeler [16] and various well-known results

of the existing literature.

2. Preliminaries

Definition 2.1 ([11]). Let F : X2 → X be a given mapping. An element (x,

y) ∈ X2 is called a coupled fixed point of F if

F (x, y) = x and F (y, x) = y.

Definition 2.2 ([3]). Let (X, ≼) be a partially ordered set. Suppose F : X2 → X

is a given mapping. We say that F has the mixed monotone property if for all x,

y ∈ X, we have

x1, x2 ∈ X, x1 ≼ x2 =⇒ F (x1, y) ≼ F (x2, y),

y1, y2 ∈ X, y1 ≼ y2 =⇒ F (x, y1) ≽ F (x, y2).

Definition 2.3 ([15]). Let F : X2 → X and G : X → X be given mappings. An

element (x, y) ∈ X2 is called a coupled coincidence point of mappings F and G if

F (x, y) = Gx and F (y, x) = Gy.

Definition 2.4 ([15]). Let F : X2 → X and G : X → X be given mappings. An

element (x, y) ∈ X2 is called a common coupled fixed point of mappings F and G if

x = F (x, y) = Gx and y = F (y, x) = Gy.

Definition 2.5 ([15]). Mappings F : X2 → X and G : X → X are said to be

commutative if

GF (x, y) = F (Gx, Gy), for all (x, y) ∈ X2.



UTILIZING GENERALIZED MEIR-KEELER CONTRACTION 299

Definition 2.6 ([15]). Let (X, ≼) be a partially ordered set. Suppose F : X2 → X

and G : X → X are given mappings. We say that F has the mixed G– monotone

property if for all x, y ∈ X, we have

x1, x2 ∈ X, Gx1 ≼ Gx2 =⇒ F (x1, y) ≼ F (x2, y),

y1, y2 ∈ X, Gy1 ≼ Gy2 =⇒ F (x, y1) ≽ F (x, y2).

If G is the identity mapping on X, then F satisfies the mixed monotone property.

Definition 2.7 ([4]). Mappings F : X2 → X and G : X → X are said to be

compatible if

lim
n→∞

d(GF (xn, yn), F (Gxn, Gyn)) = 0,

lim
n→∞

d(GF (yn, xn), F (Gyn, Gxn)) = 0,

whenever {xn} and {yn} are sequences in X such that

lim
n→∞

F (xn, yn) = lim
n→∞

Gxn = x ∈ X,

lim
n→∞

F (yn, xn) = lim
n→∞

Gyn = y ∈ X.

These studies could be applied to initial value problems defined by differential or

integral equations.

Definition 2.8 ([3, 10]). A partially ordered metric space (X, d, ≼) is a metric space

(X, d) provided with a partial order ≼ . A partially ordered metric space (X, d, ≼)

is said to be non-decreasing-regular (respectively, non-increasing-regular) if for every

sequence {xn} ⊆ X such that {xn} → x and xn ≼ xn+1 (respectively, xn ≽ xn+1)

for all n ≥ 0, we have that xn ≼ x (respectively, xn ≽ x) for all n ≥ 0. (X, d, ≼)

is said to be regular if it is both non-decreasing-regular and non-increasing-regular.

Let F, G : X → X be two mappings. We say that F is (G, ≼)-non-decreasing if

Fx ≼ Fy for all x, y ∈ X such that Gx ≼ Gy. If G is the identity mapping on X,

we say that F is ≼-non-decreasing.

Definition 2.9 ([5]). Two self-mappings G and F of a non-empty set X are said to

be commutative if GFx = FGx for all x ∈ X.

Definition 2.10 ([13]). Let (X, d, ≼) be a partially ordered metric space. Two

mappings F, G : X → X are said to be compatible if

lim
n→∞

d(GFxn, FGxn) = 0,
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provided that {xn} is a sequence in X such that

lim
n→∞

Fxn = lim
n→∞

Gxn ∈ X.

Definition 2.11 ([14]). Two self-mappings G and F of a non-empty set X are

said to be weakly compatible if they commute at their coincidence points, that is, if

Gx = Fx for some x ∈ X, then GFx = FGx.

Definition 2.12 ([5]). Let X be a nonempty set. Mappings g and F, where g :

X → X and F : X2 → X are said to be weakly compatible if they commute at their

coupled coincidence points, that is, if F (x, y) = gx and F (y, x) = gy for some (x,

y) ∈ X2, then gF (x, y) = F (gx, gy) and gF (y, x) = F (gy, gx).

3. Fixed Point Results

In this section we prove a unique fixed point result for mappings f, g : X → X

in a partially ordered metric space (X, d, ≼), where X is a non-empty set. For

simplicity, we denote g(x) by gx where x ∈ X.

Theorem 3.1. Let (X, d, ≼) be a partially ordered metric space and f, g : X → X

be two mappings such that f is (g, ≼)-non-decreasing, f(X) ⊆ g(X) and for each

ε > 0, there exists δ(ε) > 0 such that

(3.1) ε ≤ d(gx, gy) ≤ ε+ δ(ε) ⇒ d(fx, fy) < ε,

for all x, y ∈ X such that gx ≼ gy. There exists x0 ∈ X such that gx0 ≼ fx0. Also

assume that, at least, one of the following conditions holds.

(a) (X, d) is complete, f and g are continuous and the pair (f, g) is compatible.

(b) (g(X), d) is complete and (X, d, ≼) is non-decreasing-regular.

(c) (X, d) is complete, g is continuous and monotone non-decreasing, the pair

(f, g) is compatible and (X, d, ≼) is non-decreasing-regular.

Then f and g have, at least, a coincidence point. Moreover, if for every x, y ∈ X

there exists a point z ∈ X such that fz is comparable to fx and fy and also the pair

(f, g) is weakly compatible. Then f and g have a unique common fixed point.

Proof. Let x0 ∈ X be arbitrary and since f(X) ⊆ g(X), there exists x1 ∈ X

such that fx0 = gx1. Then gx0 ≼ fx0 = gx1. Since f is (g, ≼)-non-decreasing,

fx0 ≼ fx1. Continuing in this manner, we get a sequence {xn}n≥0 such that {gxn}
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is ≼-non-decreasing, gxn+1 = fxn ≼ fxn+1 = gxn+2 and

(3.2) gxn+1 = fxn for all n ≥ 0.

Condition (3.1) implies the strict contractive condition

(3.3) d(fx, fy) < d(gx, gy),

for all x, y ∈ X such that gx ≼ gy.

Let dn = d(gxn, gxn+1) for all n ≥ 0. First we claim that {dn} → 0. Now, by

using the contractive condition (3.3), we have

d(gxn+1, gxn+2) = d(fxn, fxn+1) < d(gxn, gxn+1), that is, dn+1 < dn.

This shows that {dn}n≥0 is a decreasing sequence of non-negative numbers. There-

fore, there exists some ε ≥ 0 such that

lim
n→∞

dn = lim
n→∞

d(gxn, gxn+1) = ε.

We shall now prove that ε = 0. Suppose, to the contrary, that ε > 0. Then there

exists a positive integer p such that

ε < dp < ε+ δ(ε) ⇒ d(fxp, fxp+1) < ε.

It follows from (3.2) that

dp+1 = d(gxp+1, gxp+2) < ε,

which is a contradiction. Thus ε = 0 and hence

(3.4) lim
n→∞

dn = lim
n→∞

d(gxn, gxn+1) = 0.

Now we claim that {gxn}n≥0 is a Cauchy sequence in X. Let ε > 0 be arbitrary

and δ(ε) be the corresponding value from the hypothesis of our theorem. By (3.4),

there exists a positive integer k such that

(3.5) dk = d(gxk, gxk+1) < δ(ε).

For fixed number k, consider the set

Ak = {x ∈ X : gxk ≼ gx and d(gxk, gx) < ε+ δ(ε)}.

By (3.5), Ak ̸= ϕ. We claim that

(3.6) gx ∈ Ak ⇒ fx ∈ Ak.

Let gx ∈ Ak. Then

(3.7) d(gxk, gx) < ε+ δ(ε) ⇒ d(fxk, fx) < ε.



302 Amrish Handa

Now, by (3.2), (3.5) and (3.7), we have

d(gxk, fx) ≤ d(gxk, fxk) + d(fxk, fx)

≤ d(gxk, gxk+1) + d(fxk, fx)

< ε+ δ(ε).

Thus fx ∈ Ak. Again

d(gxk, gxk+1) ≤ d(gxk, fx) + d(fx, gxk+1)

< 2(ε+ δ(ε)).

Thus gxk+1 ∈ Ak and so by induction gxn ∈ Ak, for all n > k. This implies that for

all n, m > k, we have

d(gxn, gxm) ≤ d(gxn, gxk) + d(gxk, gxm)

< 2(ε+ δ(ε)) = 4ε.

This demonstrate that {gxn}n≥0 is a Cauchy sequence in X. We now claim that f

and g have a coincidence point distinguishing between cases (a)− (c).

First suppose (a) holds, that is, (X, d) is complete, f and g are continuous and

the pair (f, g) is compatible. Since (X, d) is complete, there exists x ∈ X such that

{gxn} → x and by (3.2), we also have that {fxn} → x. As f and g are continuous

and so {fgxn} → fx and {ggxn} → gx. Since the pair (f, g) is compatible, we

conclude that

d(gx, fx) = lim
n→∞

d(ggxn+1, fgxn) = lim
n→∞

d(gfxn, fgxn) = 0,

that is, x is a coincidence point of f and g.

Suppose now that (b) holds, that is, (g(X), d) is complete and (X, d, ≼) is non-

decreasing-regular. As {gxn} is a Cauchy sequence in the complete space (g(X),

d), so there exists y ∈ g(X) such that {gxn} → y. Let x ∈ X be any point such

that y = gx. In this case {gxn} → gx. Since (X, d, ≼) is non-decreasing-regular and

{gxn} is ≼-non-decreasing and converging to gx, we have gxn ≼ gx for all n ≥ 0.

Applying the contractive condition (3.3), we have

d(gxn+1, fx) = d(fxn, fx) < d(gxn, gx).

Taking n → ∞ in the above inequality and by using the fact that {gxn} → gx, we

get d(gx, fx) = 0, that is, x is a coincidence point of f and g.
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Finally suppose that (c) holds, that is, (X, d) is complete, g is continuous

and monotone non-decreasing, the pair (f, g) is compatible and (X, d, ≼) is non-

decreasing-regular. Since (X, d) is complete, there exists x ∈ X such that {gxn} →
x. By (3.2), we also have that {fxn} → x. As g is continuous, then {ggxn} → gx.

Moreover, the pair (f, g) is compatible and so we have

lim
n→∞

d(ggxn+1, fgxn) = lim
n→∞

d(gfxn, fgxn) = 0.

As {ggxn} → gx the previous property means that {fgxn} → gx.

Since (X, d, ≼) is non-decreasing-regular and {gxn} is ≼-non-decreasing and

converging to x, we deduce that gxn ≼ x, which, by the monotonicity of g, implies

ggxn ≼ gx. By using the contractive condition (3.4), we get

d(fgxn, fx) < d(ggxn, gx).

On taking n→ ∞ in the above inequality, by using the fact that {ggxn} → gx and

{fgxn} → gx, we get d(gx, fx) = 0, that is, x is a coincidence point of f and g.

Suppose x and y are coincidence points of g and f, that is, gx = fx and gy = fy.

Now, we show that gx = gy. By the assumption, there exists z ∈ X such that fz

is comparable with fx and fy. Put z0 = z and choose z1 ∈ X so that gz0 = fz1.

One can inductively define sequences {gzn} where gzn+1 = fzn for all n ≥ 0. Hence

fx = gx and fz = fz0 = gz1 are comparable. Suppose that gz1 ≼ gx, we shall

prove that gzn ≼ gx for each n ≥ 0. In fact, we will use mathematical induction.

Since gz1 ≼ gx, our claim is true for n = 1.

Suppose that gzn ≼ gx holds for some n > 1. Since f is g-non-decreasing with

respect to ≼, we have gzn+1 = fzn ≼ fx = gx and this proves our claim.

Let en = d(gx, gzn) for all n ≥ 0. Since gzn ≼ gx, by using conditions (3.3) and

(3.2), we have

(3.8) d(gx, gzn+1) = d(fx, fzn) < d(gx, gzn), that is, en+1 < en.

This shows that the sequence {en}n≥0 is a decreasing sequence of positive numbers.

Then there exists e ≥ 0 such that

(3.9) lim
n→∞

en = lim
n→∞

d(gx, gzn) = e.

If possible, suppose e > 0. On taking n → ∞ in (3.8) and by using (3.9), we get a

contradiction. Hence

(3.10) lim
n→∞

en = lim
n→∞

d(gx, gzn) = 0.
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Similarly, one can obtain that

(3.11) lim
n→∞

d(gy, gzn) = 0.

Hence, by (3.10) and (3.11), we get

(3.12) gx = gy.

Since gx = fx, by weak compatibility of g and f, we have ggx = gfx = fgx. Let

u = gx, then gu = fu, that is, u is a coincidence point of g and f. Then from (3.12)

with y = u, it follows that gx = gu, that is, u = gu = fu. Therefore, u is a common

fixed point of g and f. To prove the uniqueness, assume that v is another common

fixed point of g and f. Then by (3.12) we have v = gv = gu = u. Hence the common

fixed point of g and f is unique. �

Putting g = I (the identity mapping) in Theorem 3.1, we get the following

Corollary.

Corollary 3.2. Let (X, d, ≼) be a partially ordered metric space. Suppose f

: X → X is a non-decreasing mapping and for each ε > 0, there exists δ(ε) > 0 such

that

ε ≤ d(x, y) ≤ ε+ δ(ε) ⇒ d(fx, fy) < ε,

for all x, y ∈ X such that x ≼ y. There exists x0 ∈ X such that x0 ≼ fx0. Then f

has a fixed point.

Example 3.1. Suppose X = R, furnished with the usual metric d : X ×X → [0,

+∞) with the natural ordering of real numbers. Let f, g : X → X be defined as

fx =
x2

3
and gx = x2.

First, we shall show that the mappings f and g satisfy the contractive condition of

Theorem 3.1. Let x, y ∈ X with gx ≼ gy such that

ε ≤ d(gx, gy) ≤ ε+ δ(ε), that is, ε ≤
∣∣x2 − y2

∣∣ ≤ ε+ δ(ε).

Then

d(fx, fy) =

∣∣∣∣x23 − y2

3

∣∣∣∣ ≤ 1

3

∣∣x2 − y2
∣∣ ≤ 1

3
(ε+ δ(ε)) < ε.

Thus the contractive condition of Theorem 3.1 is satisfied for all x, y ∈ X.Moreover,

all the other conditions of Theorem 3.1 are satisfied and u = 0 is a unique common

fixed point of f and g.



UTILIZING GENERALIZED MEIR-KEELER CONTRACTION 305

4. Coupled Fixed Point Results

In this section, we derive some coupled fixed point results for mappings S, T :

X2 → X2 in partially ordered metric space (X2, ∆2, ⊑), where X is a non-empty

set with the help of the results established in the previous section. Given n ∈ N
where n ≥ 2, let Xn be the nth Cartesian product X×X× ...×X (n times). Let (X,

≼) be a partially ordered set and endow the product space X2 with the following

partial order:

W ⊑ V ⇔ x ≽ u and y ≼ v, for all W = (u, v), V = (x, y) ∈ X2.

Definition 4.1 ([1]). Let (X, d) be a metric space. Define ∆n : Xn × Xn → [0,

+∞), for A = (a1, a2, ..., an), B = (b1, b2, ..., bn) ∈ Xn, by

∆n(A, B) =
1

n

n∑
i=1

d(ai, bi).

Then ∆n is metric on Xn and (X, d) is complete if and only if (Xn, ∆n) is complete.

Let F : X2 → X and G : X → X be two mappings. Define the mappings S,

T : X2 → X2, for all V = (x, y) ∈ X2, by

S(V ) = (F (x, y), F (y, x)) and T (V ) = (Gx, Gy).

Lemma 4.1. Let (X, d, ≼) be a partially ordered metric space. Suppose F : X2 →
X, G : X → X and S, T : X2 → X2 are mappings. Then

(1) If (X, d, ≼) is regular, then (X2, ∆2, ⊑) is regular.

(2) If F is d−continuous, then S is ∆2−continuous.

(3) F has the mixed monotone property with respect to ≼ if and only if S is

⊑ −non-decreasing.

(4) F has the mixed G−monotone property with respect to ≼ if and only if then

S is (T, ⊑)−non-decreasing.

(5) If there exist two elements x0, y0 ∈ X with Gx0 ≼ F (x0, y0) and Gy0 ≽ F (y0,

x0), then there exists a point V0 = (x0, y0) ∈ X2 such that T (V0) ⊑ S(V0).

(6) If F (X2) ⊆ G(X), then S(X2) ⊆ T (X2).

(7) If F and G are commuting in (X, d, ≼), then S and T are also commuting

in (X2, ∆2, ⊑).

(8) If F and G are compatible in (X, d, ≼), then S and T are also compatible in

(X2, ∆2, ⊑).
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(9) If F and G are weak compatible in (X, d, ≼), then S and T are also weak

compatible in (X2, ∆2, ⊑).

(10) A point V = (x, y) ∈ X2 is a coupled coincidence point of F and G if and

only if it is a coincidence point of S and T.

(11) A point V = (x, y) ∈ X2 is a coupled fixed point of F if and only if it is a

fixed point of S.

Proof. Items (1) (2), (3), (4), (5), (6), (10) and (11) are obvious.

(7) Let V = (x, y) ∈ X2 be arbitrary. Since F and G are commuting, by

the definition of S and T, we have ST (V ) = S(Gx, Gy) = (F (Gx, Gy), F (Gy,

Gx)) = (GF (x, y), GF (y, x)) = T (F (x, y), F (y, x)) = TS(V ), which shows that S

and T are commuting.

(8) Let {Vn} be any sequence in X2 such that S(Vn)
∆2→ V and T (Vn)

∆2→ V, where

Vn = (xn, yn) and V = (x, y). Then

(F (xn, yn), F (yn, xn))
∆2→ (x, y) ⇒ F (xn, yn)

d→ x and F (yn, xn)
d→ y,

and

(Gxn, Gyn)
∆2→ (x, y) ⇒ Gxn

d→ x and Gyn
d→ y.

Therefore

lim
n→∞

F (xn, yn) = lim
n→∞

Gxn = x ∈ X,

lim
n→∞

F (yn, xn) = lim
n→∞

Gyn = y ∈ X.

Since the pair {F, G} is compatible, we have

lim
n→∞

d(F (Gxn, Gyn), GF (xn, yn)) = 0,

lim
n→∞

d(F (Gyn, Gxn), GF (yn, xn)) = 0.

In particular,

lim
n→∞

∆2(ST (Vn), TS(Vn))

= lim
n→∞

∆2(S(Gxn, Gyn), T (F (xn, yn), F (yn, xn)))

= lim
n→∞

∆2((F (Gxn, Gyn), F (Gyn, Gxn)), (GF (xn, yn), GF (yn, xn)))

= lim
n→∞

d(F (Gxn, Gyn), GF (xn, yn)) + d(F (Gyn, Gxn), GF (yn, xn))

2
= 0.

Hence, the mappings S and T are compatible in (X2, ∆2, ⊑).
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(9) Let V = (x, y) ∈ X2 be a coincidence point S and T. Then S(V ) = T (V ),

that is, (F (x, y), F (y, x)) = (Gx, Gy), that is, F (x, y) = Gx and F (y, x) = Gy.

Since F and G are weak compatible, by the definition of S and T, we have ST (V ) =

S(Gx, Gy) = (F (Gx, Gy), F (Gy, Gx)) = (GF (x, y), GF (y, x)) = T (F (x, y), F (y,

x)) = TS(V ), which shows that S and T commute at their coincidence point, that

is, S and T are weak compatible. �

Theorem 4.1. Let (X, ≼) be a partially ordered set such that there exists a complete

metric d on X. Suppose F : X2 → X and G : X → X are two mappings such that

F has the mixed G−monotone property with respect to ≼ on X and for each ε > 0,

there exists δ(ε) > 0 such that

ε ≤ d(Gx, Gu) + d(Gy, Gv)

2
≤ ε+ δ(ε),

implies
d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

2
< ε,

for all x, y, u, v ∈ X with Gx ≼ Gu and Gy ≽ Gv. Suppose that F (X2) ⊆ G(X), G

is continuous and monotone non-decreasing and the pair {F, G} is compatible. Also

suppose that either

(a) F is continuous or

(b) (X, d, ≼) is regular.

Suppose that there exist two elements x0, y0 ∈ X with

Gx0 ≼ F (x0, y0) and Gy0 ≽ F (y0, x0).

Then F and G have a coupled coincidence point. Furthermore, suppose that for

every (x, y), (z, w) ∈ X2, there exists a point (u, v) ∈ X2 such that (F (u, v), F (v,

u)) is comparable to (F (x, y), F (y, x)) and (F (z, w), F (w, z)), and also the pair

(F, G) is weakly compatible. Then F and G have a unique common coupled fixed

point.

Proof. One can easily obtain that the contractive condition means that, for each

ε > 0, there exists δ(ε) > 0 such that

ε ≤ ∆2(T (V ), T (W )) ≤ ε+ δ(ε) ⇒ ∆2(S(V ), S(W )) < ε,

for all V = (x, y), W = (u, v) ∈ X2 with T (V ) ⊑ T (W ). Thus it is only necessary

to utilize Theorem 3.1 to the mappings f = S and g = T in the partially ordered

metric space (X2, ∆2, ⊑) taking into account all items of Lemma 4.1. �
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Putting G = I (the identity mapping) in Theorem 4.1, we get the following

Corollary.

Corollary 4.2. Let (X, ≼) be a partially ordered set such that there exists a complete

metric d on X. Suppose F : X2 → X has mixed monotone property with respect to

≼ and for each ε > 0, there exists δ(ε) > 0 such that

ε ≤ d(x, u) + d(y, v)

2
≤ ε+ δ(ε)

implies
d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

2
< ε,

for all x, y, u, v ∈ X, with x ≼ u and y ≽ v. Also suppose that either

(a) F is continuous or

(b) (X, d, ≼) is regular.

Suppose that there exist two elements x0, y0 ∈ X with

x0 ≼ F (x0, y0) and y0 ≽ F (y0, x0).

Then F has a coupled fixed point.

5. Application to Ordinary Differential Equations

In this segment, first we obtain the solution of the following first-order periodic

problem:

(5.1)

{
u′(t) = f(t, u(t)), t ∈ [0, T ],

u(0) = u(T ),

where T > 0 and f : I × R → R is a continuous function. Take into account of the

space X = C(I, R) (I = [0, T ]) of all continuous functions from I to R, which is a

regular complete metric space with respect to the sup metric

d(x, y) = sup
t∈I

|x(t)− y(t)| , for all x, y ∈ X,

with a partial order, for all x, y ∈ X, given by

x ≼ y ⇐⇒ x(t) ≤ y(t), for all t ∈ I.

Definition 5.1. A lower solution of (5.1) is a function α ∈ C1(I, R) such that

α′(t) ≤ f(t, α(t)) for t ∈ I,

α(0) = α(T ) = 0.



UTILIZING GENERALIZED MEIR-KEELER CONTRACTION 309

Theorem 5.1. Consider the problem (5.1) with continuous function f : I ×R → R
and suppose there exists λ > 0 such that for x, y ∈ R with x ≽ y,

0 ≤ f(t, x) + λx− f(t, y)− λy ≤ λ

2
(x− y).

Then the existence of a lower solution of (5.1) gives us the existence of a solution of

(5.1).

Proof. It is noticeable that, problem (5.1) is equivalent to the following integral

equation

u(t) =

∫ T

0
G(t, s)[f(s, u(s)) + λu(s)]ds,

where G(t, s) is the Green function given by

G(t, s) =

{
eλ(T+s−t)

eλT−1
, 0 ≤ s < t ≤ T,

eλ(s−t)

eλT−1
, 0 ≤ t < s ≤ T.

Define the mapping F : X → X as follows:

F (x)(t) =

∫ T

0
G(t, s)[f(s, x(s)) + λx(s)]ds.

If x1 ≽ x2, then by using our assumption, we have f(t, x1) + λx1 ≥ f(t, x2) + λx2.

Since G(t, s) > 0, for t ∈ I, one can obtain

F (x1)(t) =

∫ T

0
G(t, s)[f(s, x1(s)) + λx1(s)]ds

≥
∫ T

0
G(t, s)[f(s, x2(s)) + λx2(s)]ds

= F (x2)(t).

Consequently F is a non-decreasing mapping. Let x, y ∈ X with x ≼ y and for each

ε > 0, there exists δ(ε) > 0 such that

(5.2) ε ≤ d(x, y) ≤ ε+ δ(ε).
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Now, by (5.2), we have

d(Fx, Fy)

= sup
t∈I

|F (x)(t)− F (y)(t)|

= sup
t∈I

∣∣∣∣∫ T

0
G(t, s)[f(s, x(s)) + λx(s)− f(s, y(s))− λy(s)]ds

∣∣∣∣
≤ sup

t∈I

∣∣∣∣∫ T

0
G(t, s) · λ

2
(x(s)− y(s))ds

∣∣∣∣
≤ λ

2
d(x, y) sup

t∈I

∣∣∣∣∫ T

0
G(t, s)ds

∣∣∣∣
≤ λ

2
d(x, y) sup

t∈I

∣∣∣∣∣
∫ t

0

eλ(T+s−t)

eλT − 1
ds+

∫ T

t

eλ(s−t)

eλT − 1
ds

∣∣∣∣∣
≤ 1

2
d(x, y)

≤ 1

2
(ε+ δ(ε)) < ε.

Thus the contractive condition of Corollary 3.2 is satisfied. Finally, suppose that

α ∈ X is a lower solution of (5.1), then

α′(s) + λα(s) ≤ f(s, α(s)) + λα(s), for t ∈ I.

Multiplying by G(t, s) and then integrating, we get∫ T

0
α′(s)G(t, s)ds+ λ

∫ T

0
α(s)G(t, s)ds ≤ F (α)(t), for t ∈ I.

Then, for all t ∈ I, we have∫ t

0
α′(s)

e(T+s−t)λ

eλT − 1
ds+

∫ T

t
α′(s)

eλ(s−t)

eλT − 1
ds+ λ

∫ T

0
α(s)G(t, s)ds ≤ F (α)(t).

Using integration by parts and α(0) = α(T ) = 0, we get

α(t) ≤ F (α)(t) for all t ∈ I.

This proves that α ≼ F (α). Thus all the hypothesis of Corollary 3.2 are satisfied.

Consequently, F has a fixed point x ∈ X which is the solution of (5.1) in X = C(I,

R). �

Next, we investigate the solution of the following two-point boundary value prob-

lem.

(5.3)

{
−x′′(t) = θ(t, x(t), x(t)), x ∈ (0, +∞), t ∈ [0, 1],

x(0) = x(1) = 0.



UTILIZING GENERALIZED MEIR-KEELER CONTRACTION 311

Theorem 5.2. With the following assumptions

(a) θ : [0, 1]× R× R → R is continuous.

(b) Suppose that for all t ∈ I, x1 ≽ x2 and y1 ≼ y2,

0 ≤ θ(t, x1, y1)− θ(t, x2, y2) ≤ (x1 − x2) + (y1 − y2).

(c) There exists (u, v) ∈ C2(I, R)× C2(I, R) such that −u′′(t) ≤ θ(t, u(t), v(t)), t ∈ [0, 1],
−v′′(t) ≥ θ(t, v(t), u(t)), t ∈ [0, 1],
u(0) = u(1) = v(0) = v(1) = 0,

problem (5.3) has a unique solution in C2(I, R).

Proof. It is notice that the solution (in C2(I, R)) of problem (5.3) is equivalent to

the solution (in C(I, R)) of the following Hammerstein integral equation:

x(t) =

∫ 1

0
G(t, s)θ(s, x(s), x(s))ds for t ∈ [0, 1],

where G(t, s) is the Green function of differential operator − d2

dt2
with Dirichlet

boundary condition x(0) = x(1) = 0, that is,

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,
s(1− t), 0 ≤ s ≤ t ≤ 1.

Define now the mapping F : X2 → X by

F (x, y)(t) =

∫ 1

0
G(t, s)θ(s, x(s), y(s))ds, t ∈ [0, 1] and x, y ∈ X.

It follows, from (b), that F has the mixed monotone property with respect to the

partial order ≼ in X. Let x, y, u, v ∈ X with x ≽ u and y ≼ v and for each ε > 0,

there exists δ(ε) > 0 such that

(5.4) ε ≤ d(x, u) + d(y, v)

2
≤ ε+ δ(ε).

Now, from (b) and (5.4), we have
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d(F (x, y), F (u, v))

= sup
t∈I

|F (x, y)(t)− F (u, v)(t)|

= sup
t∈I

∫ 1

0
G(t, s)[θ(s, x(s), y(s))− θ(s, u(s), v(s))]ds

≤ sup
t∈I

∫ 1

0
G(t, s) · (x(s)− u(s) + y(s)− v(s))ds

≤ (d(x, u) + d(y, v)) sup
t∈I

∫ 1

0
G(t, s)ds.

Thus

(5.5) d(F (x, y), F (u, v)) ≤ (d(x, u) + d(y, v)) sup
t∈I

∫ 1

0
G(t, s)ds.

It is noticeable that ∫ 1

0
G(t, s)ds = − t

2

2
+
t

2
,

and that

sup
t∈[0, 1]

∫ 1

0
G(t, s)ds =

1

8
.

These facts and (5.5) give us

d(F (x, y), F (u, v)) ≤ 1

8
(d(x, u) + d(y, v))

Similarly, we can obtain

d(F (y, x), F (v, u)) ≤ 1

8
(d(x, u) + d(y, v))

By summing up the above two inequalities, dividing by 2 and using (5.4), we get

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

2

≤ 1

8

(
d(x, u) + d(y, v)

2

)
≤ 1

8
(ε+ δ(ε)) < ε.

Thus the contractive condition of Corollary 4.2 is satisfied. Now, let (u, v) ∈ C2(I,

R)× C2(I, R) be a solution to (5.3), then

−u′′(s) ≤ θ(s, u(s), v(s)), s ∈ [0, 1].

Multiplying by G(t, s), we get∫ 1

0
−u′′(s)G(t, s)ds ≤ F (u, v)(t), t ∈ [0, 1].
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Then, for all t ∈ [0, 1], we have

−(1− t)

∫ t

0
su′′(s)ds− t

∫ 1

t
(1− s)u′′(s)ds ≤ F (u, v)(t).

Using integration by parts and u(0) = u(1) = 0, for all t ∈ [0, 1], we get

−(1− t)(tu′(t)− u(t))− t(−(1− t)u′(t)− u(t)) ≤ F (u, v)(t).

Thus, we have

u(t) ≼ F (u, v)(t), for t ∈ [0, 1].

It follows that u ≼ F (u, v). Similarly, one can show that v ≽ F (v, u). Thus all the

hypothesis of Corollary 4.2 are satisfied. Consequently, F has a coupled fixed point

(x, y) ∈ X2 which is the solution of (5.3) in X = C(I, R). �

Remark 5.1. Using the same criterion, we can obtain tripled, quadruple and in

general, multidimensional fixed point theorems from Theorem 3.1.
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