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A-HILBERT SCHEMES FOR —(1""1,q)
r

SEUNG-JO JUNG

ABSTRACT. For a finite group G C GL(n,C), the G-Hilbert scheme is a fine moduli
space of G-clusters, which are 0-dimensional G-invariant subschemes Z with H°(0z)
isomorphic to C[G]. In many cases, the G-Hilbert scheme provides a good resolution
of the quotient singularity C™ /G, but in general it can be very singular. In this note,
we prove that for a cyclic group A C GL(n, C) of type %(17 ..., 1,a) with r coprime
to a, A-Hilbert Scheme is smooth and irreducible.

1. INTRODUCTION

Let G be a finite group in GL(n,C). A 0-dimensional G-invariant subscheme
Z C C"is called a G-cluster if H%(Oy) is isomorphic to the regular representation
ClG] of G as a C[G]-module. Ito-Nakamura[5| introduced the G-Hilbert scheme
G-Hilb C™ which is a fine moduli space of G-clusters. Furthermore, they proved
that if G C SL(2, C), then G-Hilb C" is the minimal resolution of C?/G. For various
cases, G-Hilb C™ provides a good resolution of the quotient singularity C"/G. For
example, for a finite subgroup G' C SL(3,C), the G-Hilbert scheme G-HilbC? is a
crepant resolution of C3/G proved in [1].

For an abelian group A, in [7] Nakamura introduced the notion of A-graphs
corresponding to torus-invariant A-clusters. Using A-graphs, he described Hilb#
which is an irreducible component of A-Hilb. Using his idea, in many cases, A-Hilb

can be calculated.
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Let A,, C GL(n,C) be the finite group of type %(1, ..., 1,a) with r coprime to a.
We use the coordinate z1,...,x,_1,y. The thing which makes this group special is
that the weights of x;’s are the same. Thus we can deduce the calculation to the
case where n = 2. In this note, from the well-knwon description of A-Hilb for the
group of type %(1, a) (e.g. [8]), we calculate A,-HilbC".

The rest of the paper is organized as follows. Section 2 introduces the toric
description due to Nakamura[7]. Section 3 is devoted to description of A-Hilb C™ for
the group of type 1(1,...,1,a).

T

2. A-Hilb viA NAKAMURA’S A-GRAPHS

2.1. Toric geometry for cyclic quotient singularities Let A C GL(n,C) be
the finite group of type %(al, ...,Qp), l.e. Aisthe subgroup generated by the diagonal

matrix diag(e®, ..., €% ) where € is a primitive r-th root of unity. Define the lattice
1
L=7Z"4+7-—(ay,...,ay)
r

which is an overlattice of L = Z" of finite index. Let {e1,...,e,} be the standard
basis of L = Z". Consider the dual lattices M = Homgz(L,Z) and M = Homg(L,Z).
The embedding of A into the torus T := (C*)™ C GL(n,C) induces a surjective
homomorphism

wt: M — AY
where AY := Hom(A,C*) is the character group of A. The group A acts on a

mi

monomial z™ = " x5 -

Ty ay™ by

g: 2™ s P9
where p = wt(z™). In this case, we call p the weight of ™. As M is the kernel
of the map wt, we have that ™ is A-invariant if and only if m € M. Thus the
dual lattices M and M can be identified with Laurent monomials and A-invariant

Laurent monomials, respectively. Furthermore, define
Msg = {z™ =a"al? .al" e M |m; >0 Vi}.

Let o4 be the cone in Lg := L ®z R generated by ey, es,...,e,. Then:
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(i) the cone o4 with the lattice L defines X = A™/A as a toric variety.
(ii) the cone o, with the lattice L defines C" as a toric variety.
(iii) The quotient map C® — X is induced by the inclusion L C L.

2.2. Nakamura’s A-graphs For abelian group cases, Nakamura[7] provided a
toric method to construct A-Hilb using A-graphs.

Definition 2.1. A set I' of monomials in C[zy,...,x,] is called an A-graph if T
satisfies:
(i) 1 eT.
(ii) The restriction map wt |p: I' — AV is bijective, i.e. for each weight p € AV,
there exists a unique monomial z™ € I" with wt(z™) = p.
(iii) For a monomial 2™ € T, if 2™ divides 2™, then z" is also in T

For an A-graph T, let wtr denote the composition of wt and (wt )~
wtp := (wt |[p) ' owt: M — T,
i.e. wtr(z™) is the unique monomial in I' whose weight is the same as ™.

For an A-graph I', we can define an A-invariant ideal It generated by all mono-

mials not in I, i.e.
Ir= (2™ |z™ ¢T).

This ideal defines an A-cluster Z(I') whose corresponding ideal Ir. As It is a
monomial ideal, Z is T-invariant. In fact, the converse is true: for a T-invariant
A-cluster Z, there is an A-graph I' such that It is the defining ideal of Z. This
means that we have a bijection between the set of T-invariant A-clusters and the

set of A-graphs.

2.3. Deformation space D(I') For an A-graph, we define the deformation space
D(T) of I as follows. First, for each weight p € AY, m, denote the unique mono-
mial of weight p in I'. The A-graph I' fixes the monomial basis of the vector space
H°(Oyry). Let Z be an A-cluster such that H%(Oz) has monomial basis I'. Giv-

ing the A-cluster structure on the vector space H°(Oyz) is equivalent to have nr
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parameters coming from the Clzy, ..., z,]-action
{)\37P|1§j§n7p€‘4v}
with
. 770
Tj-m,= )\j,pmwtr(;tj~mp) in H (Oz)

From x;xj - m, = x; - x;; - m,, these parameters satisfy “commutative” relations.
From this description, we have an affine open set D(T") in A-Hilb C". (For details, see
[6]) In general, it is hard to calculate D(T"). But D(T") has an irreducible component

which is described below.

2.3.1. LOCAL CHARTS AND G-GRAPHS For an A-graph I', define S(T") to be the

n . ,.m .
subsemigroup of M generated by for all 2" € M>p and 2™ € I'. Define

wtp(a” - ™)
a cone o(I') in Lg = R™ as follows:

o(T') = S(I)"
= {uELR | <U,M> >0, V2" € Mo, meF}.
wtp(x™ - x™)

Observe that:

(i) (Mson M) © S(T),

(ii) o(I") C o4,

(iii) S(T) C (a(F)v N M).
Note that S(I') is finitely generated as a semigroup. Thus we can define an affine

toric variety associated to the semigroup S(I'). Define two affine toric varieties:
U(T) := Spec C[S(T")],
U"(T') := Spec C[o¥ (') N M].
Note that U”(I") is the normalization of U(T") and that the torus Spec C[M] of U(T")
is isomorphic to (C*)™/A.
Even though A-Hilb C™ does not need to be irreducible, A-Hilb C™ has a unique
irreducible component Hilb? containing the torus (C*)"/A by Craw Maclagan-

Thomas [3]. The irreducible component Hilb? is called the birational component of
A-Hilb C".
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Theorem 2.2 ([3, 7, 6]). Let A be an abelian group in GL(n,C). Then:

(i) The birational component Hilb? is a not-necessarily-normal toric variety
birational to C"/A.
(ii) The variety Hilb? is covered by U(T') for all A-graphs T

Remark 2.3 ([6]). Since each irreducible component of A-Hilb C" should have T-
invariant points, to prove A-Hilb C" is irreducible, it suffices to show the following
for each A-graph I'.

(i) o(I') is an n-dimensional cone, which implies that U(I') contains a T-

invariant point corresponding to Ir.
(ii) The deformation space D(I') of Ir is equal to U(T").

3. 1(1"* a) CasEs
In this section, we calculate A-Hilb for %(1, ...,1,a) via finding all A-graphs.

3.1. Hirzebruch—Jung continued fraction We review the Hirzebruch—Jung con-

tinued fraction of rational numbers (see e.g. [8]). Let r,a be positive integers

such that a < 7. Assume further that r and a are coprime. An expression ; =

la1,az, ..., ax] is called the Hirzebruch-Jung continued fraction of T if
o 1
o M1
g = T
-

Consider the lattice

1
L=7*+7--(1,a),
T

which is an overlattice of Z?2 of finite index. Define

S
=)

I
—~
=

—_
~—

(17 a)?

Wi+1 = QW5 — Wi—1 for i = 1,2,. . .,k.

S
=

Il
S| =
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By construction, we get wi1 = (1,0). Define for i = 0,1,...,k+ 1, let

(3.1) w; = %(ai’ﬁi)'

The key picture is that {w;, w;+1} form a Z-basis of L, i.e. the cone
0; = Cone(w;, w;y1)
defines a smooth affine toric variety. Moreover the following holds.

Theorem 3.2 (e.g. [8, 2]). Let ¥ be the minimal toric fan containing all o;’s
for 0 < ¢ < k. Then the toric variety corresponding to the fan X is the minimal

resolution of the quotient singularity of type %(1, a).

Example 3.3. Let G be the group of type %(1,2). Then the Hirzebruch—Jung

continued fraction of g is
5
- =13,2].
2 [ ) ]

Then in the notation above,

1 1
wo = (0, 1), w1 = 5(1,2), Wy = 5(3, 1), w3 = (1,0).

Let X be the minimal toric fan containing the following three cones:
oo = Cone(wp,w1), o1 = Cone(wy,ws), o9 = Cone(ws,ws).

Then the fan ¥ defines the minimal resolution of the quotient singularity C?/G.
From toric geometry, the minimal resolution can be covered by three affine toric
open sets corresponding to the three 2-dimensional toric cones. For example, the

z? yS]

toric cone o1 = Cone(wi,wy) corresponds to the affine toric variety SpecC| T

which is smooth.

3.2. A-graphs for n = 2 Let Ay be the group of type %(1,a) with coordinates
x,y. By [4], it is well-known that As-HilbC2 is the minimal resolution of C2/As.
Therefore the toric variety in Theorem 3.2 is isomorphic to Ay-Hilb C2. From this
fact, we can find all As-graphs.
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Proposition 3.4. For Ay of type 2(1,a) with (r,a) =1 and L = [ay,as, ..., az),

T

the number of Ag-graphs is (k+ 1). More precisely, for each 0 < i < k, the toric

cone o; corresponds to an As-graph I'; with
S(T;) =0/ N M.
Moreover, the As-Hilb C? is irreducible.
In particular, we have
Ip={l,y,... ,yr_l}, Iy ={1,x,... ,:pr_l}.
Remark 3.5. From toric geometry (e.g. [2, 8]), for each 0 < i < k, we have

S(T;) =C [ij, Z(;:I } Moreover, the As-graph I'; contains at least the following

monomials

La, ..., 2%y, .yl
Example 3.6. Let G be the group of type %(1,2). Since the minimal resolution
of the quotient singularity C?/G is isomorphic to G-Hilb C2. Thus the toric fan of

G-Hilb C? has three 2-dimensional cones:
oo = Cone(wp,wy), o1 = Cone(wy,ws), o9 = Cone(wsy,ws).
The corresponding G-graphs are
Lo = {Ly, v 9"y},
I = {L,2,y,2y,4°},
Iy = {1,z 22 23 x4},
The T-invariant G-cluster corresponding to I'y is defined by the ideal
Ir, = (2% %, °).
Here the deformation of Z(Ir,) is given by the parameters A, v with
=Xy, vP=vz, zyP=\.

This gives an affine open set U(T'1) = Spec C[A, v] which is in G-Hilb C2. For a point
(\,v) € C2 ~U(T), it parametrises the G-cluster given by

Iy = (x® = My, y> — va, zy® — W)
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which is a G-invariant ideal of C|x, y].

3.3. A-graphs for n > 3 Let A, be the group of type %(1, ..., 1,a) acting on C"

with (r,a) = 1. We use the coordinates x1,...,Zn—-1,¥.

Theorem 3.7. Let A,, C GL(n,C) be the group of type %(1, ..oy 1,a) with (r,a) = 1.
If the £ = [ay,aq,...,ax], then the following hold.

(i)
(i)

The number of A, -graphs is nk —k + 1.
A,-Hilb C" is smooth and irreducible. Thus A,-Hilb C™ is a resolution of
the quotient singularity C"/A,,.

Proof. First consider the A,-graph I'’ containing only powers of y. This means I

does not contain any other x;’s. Then I 0 should be

={1,y,...,47 '}
For this A,-graph, we have
z1 Tp—1

S(FO)ZC[y,..., ; y] and U(I°) ~C™

Suppose that I" is an A,-graph containing x; for some 1 < j < n — 1. Since z;’s

are of the same weight, I' cannot contain any z; with j # [. Thus I' consists of
monomials in z; and y. Thus I' can be seen as an As-graph with considering the
coordinate x;,y. Thus I' should correspond to one of As-graphs in Proposition 3.4,

say I'; for some 1 < ¢ < k. Since S(I';) =C [Zsz , i;:%

] , we have

Bi
1 e W
A Y

. . .’ .
x] 1;] y i x?z+l

ST) =C

] and U(I') ~C".

Therefore, there are (nk — k + 1) A,-graphs which yield a smooth affine toric open
cover of Hilb4» C". Note that for each A,-graph I, the toric cone o(I) is a smooth
n-dimensional cone.

To complete the proof, it remains to show the irreducibility of A,-Hilb C". First
note that A,-HilbC? is irreducible. From Remark 2.3, it is sufficient to show the
deformation space D(T) is equal to U(T) for each I'. For the A,-graph I'V, it is
straightforward to see D(I'°) = U(T?).
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Let I be an A,-graph containing z; for some 1 < j < n — 1, which corresponds
to an As-graph I';. Note that the action of x; and y is already given by that of
x encoded in the As-graph I';. So the remaining deformation parameters are the

parameters corresponding to the action of x; for [ # j, which are denoted by

{>‘l7p‘l7éjap€ Ar\i}

in Section 2.3. Note that the weight of x; is equal to x; which is denoted by p;. For

the trivial character py € A, the parameters \; ,, are given by
(*) 2y 1= Ao 25

With parameters {); , | p € A}, these parameters )\; ,, determine other parameters
as follows: Let p € A). There exists a unique monomial m, € I' of weight p. The

parameter \; , is given by x; - m, = A\; ,m,,, . Here using Equation (*), we have
Ty My = Appg Tj - My = AppgAjp My, .

This induces A, = A po\j,p because my,, is a base of the vector space H(Ozry).

This implies that from 2-dimensional cases,
D(I') ~ D(T;) x C"2 ~ C™.

This implies that A,-Hilb C" is irreducible. 0
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