ISSN(Print) 1226-0657 ISSN(Online) 2287-6081

A-HILBERT SCHEMES FOR $\frac{1}{r}(1^{n-1}, a)$

Seung-Jo Jung

ABSTRACT. For a finite group $G \subset \mathrm{GL}(n,\mathbb{C})$, the G-Hilbert scheme is a fine moduli space of G-clusters, which are 0-dimensional G-invariant subschemes Z with $H^0(\mathcal{O}_Z)$ isomorphic to $\mathbb{C}[G]$. In many cases, the G-Hilbert scheme provides a good resolution of the quotient singularity \mathbb{C}^n/G , but in general it can be very singular. In this note, we prove that for a cyclic group $A \subset \mathrm{GL}(n,\mathbb{C})$ of type $\frac{1}{r}(1,\ldots,1,a)$ with r coprime to a, A-Hilbert Scheme is smooth and irreducible.

1. Introduction

Let G be a finite group in $GL(n,\mathbb{C})$. A 0-dimensional G-invariant subscheme $Z \subset \mathbb{C}^n$ is called a G-cluster if $H^0(\mathcal{O}_Z)$ is isomorphic to the regular representation $\mathbb{C}[G]$ of G as a $\mathbb{C}[G]$ -module. Ito-Nakamura[5] introduced the G-Hilbert scheme G-Hilb \mathbb{C}^n which is a fine moduli space of G-clusters. Furthermore, they proved that if $G \subset SL(2,\mathbb{C})$, then G-Hilb \mathbb{C}^n is the minimal resolution of \mathbb{C}^2/G . For various cases, G-Hilb \mathbb{C}^n provides a good resolution of the quotient singularity \mathbb{C}^n/G . For example, for a finite subgroup $G \subset SL(3,\mathbb{C})$, the G-Hilbert scheme G-Hilb \mathbb{C}^3 is a crepant resolution of \mathbb{C}^3/G proved in [1].

For an abelian group A, in [7] Nakamura introduced the notion of A-graphs corresponding to torus-invariant A-clusters. Using A-graphs, he described $Hilb^A$ which is an irreducible component of A-Hilb. Using his idea, in many cases, A-Hilb can be calculated.

Received by the editors August 04, 2021. Accepted November 29, 2021.

2010 Mathematics Subject Classification. 14F17, 32S25, 14J17, 14D07.

Key words and phrases. A-Hilbert schemes, cyclic quotient singularities.

Let $A_n \subset \operatorname{GL}(n,\mathbb{C})$ be the finite group of type $\frac{1}{r}(1,\ldots,1,a)$ with r coprime to a. We use the coordinate x_1,\ldots,x_{n-1},y . The thing which makes this group special is that the weights of x_j 's are the same. Thus we can deduce the calculation to the case where n=2. In this note, from the well-knwon description of A-Hilb for the group of type $\frac{1}{r}(1,a)$ (e.g. [8]), we calculate A_n -Hilb \mathbb{C}^n .

The rest of the paper is organized as follows. Section 2 introduces the toric description due to Nakamura[7]. Section 3 is devoted to description of A-Hilb \mathbb{C}^n for the group of type $\frac{1}{r}(1,\ldots,1,a)$.

2. A-Hilb via Nakamura's A-Graphs

2.1. Toric geometry for cyclic quotient singularities Let $A \subset GL(n, \mathbb{C})$ be the finite group of type $\frac{1}{r}(a_1, \ldots, a_n)$, i.e. A is the subgroup generated by the diagonal matrix $\operatorname{diag}(\epsilon^{a_1}, \ldots, \epsilon^{a_n})$ where ϵ is a primitive r-th root of unity. Define the lattice

$$L = \mathbb{Z}^n + \mathbb{Z} \cdot \frac{1}{r}(a_1, \dots, a_n)$$

which is an overlattice of $\overline{L} = \mathbb{Z}^n$ of finite index. Let $\{e_1, \ldots, e_n\}$ be the standard basis of $\overline{L} = \mathbb{Z}^n$. Consider the dual lattices $\overline{M} = \operatorname{Hom}_{\mathbb{Z}}(\overline{L}, \mathbb{Z})$ and $M = \operatorname{Hom}_{\mathbb{Z}}(L, \mathbb{Z})$. The embedding of A into the torus $\mathbf{T} := (\mathbb{C}^{\times})^n \subset \operatorname{GL}(n, \mathbb{C})$ induces a surjective homomorphism

wt:
$$\overline{M} \longrightarrow A^{\vee}$$

where $A^{\vee} := \operatorname{Hom}(A, \mathbb{C}^{\times})$ is the character group of A. The group A acts on a monomial $x^m = x_1^{m_1} x_2^{m_2} \cdots x_n^{m_n}$ by

$$g \colon x^m \mapsto \epsilon^{\rho(g)} x^m$$

where $\rho = \operatorname{wt}(x^m)$. In this case, we call ρ the weight of x^m . As M is the kernel of the map wt, we have that x^m is A-invariant if and only if $m \in M$. Thus the dual lattices \overline{M} and M can be identified with Laurent monomials and A-invariant Laurent monomials, respectively. Furthermore, define

$$\overline{M}_{\geq 0} := \{ x^m = x_1^{m_1} x_2^{m_2} \cdots x_n^{m_n} \in M \mid m_i \geq 0 \quad \forall i \}.$$

Let σ_+ be the cone in $L_{\mathbb{R}} := L \otimes_{\mathbb{Z}} \mathbb{R}$ generated by e_1, e_2, \ldots, e_n . Then:

- (i) the cone σ_+ with the lattice L defines $X = \mathbb{A}^n/A$ as a toric variety.
- (ii) the cone σ_+ with the lattice \overline{L} defines \mathbb{C}^n as a toric variety.
- (iii) The quotient map $\mathbb{C}^n \to X$ is induced by the inclusion $\overline{L} \subset L$.
- **2.2.** Nakamura's A-graphs For abelian group cases, Nakamura[7] provided a toric method to construct A-Hilb using A-graphs.

Definition 2.1. A set Γ of monomials in $\mathbb{C}[x_1,\ldots,x_n]$ is called an A-graph if Γ satisfies:

- (i) $1 \in \Gamma$.
- (ii) The restriction map wt $|_{\Gamma} \colon \Gamma \to A^{\vee}$ is bijective, i.e. for each weight $\rho \in A^{\vee}$, there exists a unique monomial $x^m \in \Gamma$ with $\operatorname{wt}(x^m) = \rho$.
- (iii) For a monomial $x^m \in \Gamma$, if x^n divides x^m , then x^n is also in Γ .

For an A-graph Γ , let $\operatorname{wt}_{\Gamma}$ denote the composition of wt and $(\operatorname{wt}|_{\Gamma})^{-1}$:

$$\operatorname{wt}_{\Gamma} := (\operatorname{wt}|_{\Gamma})^{-1} \circ \operatorname{wt} : \overline{M} \to \Gamma,$$

i.e. $\operatorname{wt}_{\Gamma}(x^m)$ is the unique monomial in Γ whose weight is the same as x^m .

For an A-graph Γ , we can define an A-invariant ideal I_{Γ} generated by all monomials not in Γ , i.e.

$$I_{\Gamma} = \langle x^m \mid x^m \notin \Gamma \rangle.$$

This ideal defines an A-cluster $Z(\Gamma)$ whose corresponding ideal I_{Γ} . As I_{Γ} is a monomial ideal, Z is **T**-invariant. In fact, the converse is true: for a **T**-invariant A-cluster Z, there is an A-graph Γ such that I_{Γ} is the defining ideal of Z. This means that we have a bijection between the set of **T**-invariant A-clusters and the set of A-graphs.

2.3. Deformation space $D(\Gamma)$ For an A-graph, we define the deformation space $D(\Gamma)$ of I_Z as follows. First, for each weight $\rho \in A^{\vee}$, \mathbf{m}_{ρ} denote the unique monomial of weight ρ in Γ . The A-graph Γ fixes the monomial basis of the vector space $H^0(\mathcal{O}_{Z(\Gamma)})$. Let Z be an A-cluster such that $H^0(\mathcal{O}_Z)$ has monomial basis Γ . Giving the A-cluster structure on the vector space $H^0(\mathcal{O}_Z)$ is equivalent to have nr

parameters coming from the $\mathbb{C}[x_1,\ldots,x_n]$ -action

$$\{\lambda_{j,\rho} \mid 1 \le j \le n, \, \rho \in A^{\vee}\}$$

with

$$x_j \cdot \mathbf{m}_{\rho} = \lambda_{j,\rho} \mathbf{m}_{\text{wt}_{\Gamma}(x_j \cdot \mathbf{m}_{\rho})}$$
 in $H^0(\mathcal{O}_Z)$.

From $x_i x_{j'} \cdot \mathbf{m}_{\rho} = x_j \cdot x_{j'} \cdot \mathbf{m}_{\rho}$, these parameters satisfy "commutative" relations. From this description, we have an affine open set $D(\Gamma)$ in A-Hilb \mathbb{C}^n . (For details, see [6]) In general, it is hard to calculate $D(\Gamma)$. But $D(\Gamma)$ has an irreducible component which is described below.

2.3.1. LOCAL CHARTS AND G-GRAPHS For an A-graph Γ , define $S(\Gamma)$ to be the subsemigroup of M generated by $\frac{x^n \cdot x^m}{\operatorname{wt}_{\Gamma}(x^n \cdot x^m)}$ for all $x^n \in \overline{M}_{\geq 0}$ and $x^m \in \Gamma$. Define a cone $\sigma(\Gamma)$ in $L_{\mathbb{R}} = \mathbb{R}^n$ as follows:

$$\sigma(\Gamma) = S(\Gamma)^{\vee}$$

$$= \left\{ u \in L_{\mathbb{R}} \mid \left\langle u, \frac{x^n \cdot x^m}{\operatorname{wt}_{\Gamma}(x^n \cdot x^m)} \right\rangle \ge 0, \quad \forall x^n \in \overline{M}_{\ge 0}, \quad x^m \in \Gamma \right\}.$$

Observe that:

- $\begin{array}{ll} \text{(i)} & \left(\overline{M}_{\geq 0} \cap M\right) \subset S(\Gamma), \\ \text{(ii)} & \sigma(\Gamma) \subset \sigma_+, \\ \text{(iii)} & S(\Gamma) \subset \left(\sigma(\Gamma)^\vee \cap M\right). \end{array}$

(iii)
$$S(\Gamma) \subset (\sigma(\Gamma)^{\vee} \cap M)$$
.

Note that $S(\Gamma)$ is finitely generated as a semigroup. Thus we can define an affine toric variety associated to the semigroup $S(\Gamma)$. Define two affine toric varieties:

$$U(\Gamma) := \operatorname{Spec} \mathbb{C}[S(\Gamma)],$$

$$U^{\nu}(\Gamma) := \operatorname{Spec} \mathbb{C}[\sigma^{\vee}(\Gamma) \cap M].$$

Note that $U^{\nu}(\Gamma)$ is the normalization of $U(\Gamma)$ and that the torus Spec $\mathbb{C}[M]$ of $U(\Gamma)$ is isomorphic to $(\mathbb{C}^{\times})^n/A$.

Even though A-Hilb \mathbb{C}^n does not need to be irreducible, A-Hilb \mathbb{C}^n has a unique irreducible component Hilb^A containing the torus $(\mathbb{C}^{\times})^n/A$ by Craw-Maclagan-Thomas [3]. The irreducible component Hilb^A is called the birational component of A-Hilb \mathbb{C}^n .

Theorem 2.2 ([3, 7, 6]). Let A be an abelian group in $GL(n, \mathbb{C})$. Then:

- (i) The birational component Hilb^A is a not-necessarily-normal toric variety birational to \mathbb{C}^n/A .
- (ii) The variety $Hilb^A$ is covered by $U(\Gamma)$ for all A-graphs Γ .

Remark 2.3 ([6]). Since each irreducible component of A-Hilb \mathbb{C}^n should have **T**-invariant points, to prove A-Hilb \mathbb{C}^n is irreducible, it suffices to show the following for each A-graph Γ .

- (i) $\sigma(\Gamma)$ is an *n*-dimensional cone, which implies that $U(\Gamma)$ contains a **T**-invariant point corresponding to I_{Γ} .
- (ii) The deformation space $D(\Gamma)$ of I_{Γ} is equal to $U(\Gamma)$.

3.
$$\frac{1}{r}(1^{n-1}, a)$$
 CASES

In this section, we calculate A-Hilb for $\frac{1}{r}(1,\ldots,1,a)$ via finding all A-graphs.

3.1. Hirzebruch–Jung continued fraction We review the Hirzebruch–Jung continued fraction of rational numbers (see e.g. [8]). Let r, a be positive integers such that a < r. Assume further that r and a are coprime. An expression $\frac{r}{a} = [a_1, a_2, \ldots, a_k]$ is called the *Hirzebruch-Jung continued fraction* of $\frac{r}{a}$ if

$$\frac{r}{a} = a_1 - \frac{1}{a_2 - \frac{1}{\dots - \frac{1}{a_k}}}.$$

Consider the lattice

$$L = \mathbb{Z}^2 + \mathbb{Z} \cdot \frac{1}{r}(1, a),$$

which is an overlattice of \mathbb{Z}^2 of finite index. Define

$$w_0 = (0,1),$$

 $w_1 = \frac{1}{r}(1,a),$
 $w_{i+1} = a_i w_i - w_{i-1} \text{ for } i = 1, 2, \dots, k.$

By construction, we get $w_{k+1} = (1,0)$. Define for $i = 0, 1, \dots, k+1$, let

$$(3.1) w_i = \frac{1}{r}(\alpha_i, \beta_i).$$

The key picture is that $\{w_i, w_{i+1}\}$ form a \mathbb{Z} -basis of L, i.e. the cone

$$\sigma_i := \operatorname{Cone}(w_i, w_{i+1})$$

defines a smooth affine toric variety. Moreover the following holds.

Theorem 3.2 (e.g. [8, 2]). Let Σ be the minimal toric fan containing all σ_i 's for $0 \le i \le k$. Then the toric variety corresponding to the fan Σ is the minimal resolution of the quotient singularity of type $\frac{1}{r}(1,a)$.

Example 3.3. Let G be the group of type $\frac{1}{5}(1,2)$. Then the Hirzebruch–Jung continued fraction of $\frac{5}{2}$ is

$$\frac{5}{2} = [3, 2].$$

Then in the notation above,

$$w_0 = (0,1), \quad w_1 = \frac{1}{5}(1,2), \quad w_2 = \frac{1}{5}(3,1), \quad w_3 = (1,0).$$

Let Σ be the minimal toric fan containing the following three cones:

$$\sigma_0 = \operatorname{Cone}(w_0, w_1), \quad \sigma_1 = \operatorname{Cone}(w_1, w_2), \quad \sigma_2 = \operatorname{Cone}(w_2, w_3).$$

Then the fan Σ defines the minimal resolution of the quotient singularity \mathbb{C}^2/G . From toric geometry, the minimal resolution can be covered by three affine toric open sets corresponding to the three 2-dimensional toric cones. For example, the toric cone $\sigma_1 = \text{Cone}(w_1, w_2)$ corresponds to the affine toric variety $\text{Spec } \mathbb{C}[\frac{x^2}{y}, \frac{y^3}{x}]$ which is smooth.

3.2. A-graphs for n=2 Let A_2 be the group of type $\frac{1}{r}(1,a)$ with coordinates x,y. By [4], it is well-known that A_2 -Hilb \mathbb{C}^2 is the minimal resolution of \mathbb{C}^2/A_2 . Therefore the toric variety in Theorem 3.2 is isomorphic to A_2 -Hilb \mathbb{C}^2 . From this fact, we can find all A_2 -graphs.

Proposition 3.4. For A_2 of type $\frac{1}{r}(1,a)$ with (r,a)=1 and $\frac{r}{a}=[a_1,a_2,\ldots,a_k]$, the number of A_2 -graphs is (k+1). More precisely, for each $0 \le i \le k$, the toric cone σ_i corresponds to an A_2 -graph Γ_i with

$$S(\Gamma_i) = \sigma_i^{\vee} \cap M.$$

Moreover, the A_2 -Hilb \mathbb{C}^2 is irreducible.

In particular, we have

$$\Gamma_0 = \{1, y, \dots, y^{r-1}\}, \quad \Gamma_k = \{1, x, \dots, x^{r-1}\}.$$

Remark 3.5. From toric geometry (e.g. [2, 8]), for each $0 \le i \le k$, we have $S(\Gamma_i) = \mathbb{C}\left[\frac{x^{\beta_i}}{y^{\alpha_i}}, \frac{y^{\alpha_{i+1}}}{x^{\beta_{i+1}}}\right]$. Moreover, the A_2 -graph Γ_i contains at least the following monomials

$$1, x, \dots, x^{\beta_i - 1}, y, \dots, y^{\alpha_{i+1} - 1}.$$

Example 3.6. Let G be the group of type $\frac{1}{5}(1,2)$. Since the minimal resolution of the quotient singularity \mathbb{C}^2/G is isomorphic to G-Hilb \mathbb{C}^2 . Thus the toric fan of G-Hilb \mathbb{C}^2 has three 2-dimensional cones:

$$\sigma_0 = \operatorname{Cone}(w_0, w_1), \quad \sigma_1 = \operatorname{Cone}(w_1, w_2), \quad \sigma_2 = \operatorname{Cone}(w_2, w_3).$$

The corresponding G-graphs are

$$\Gamma_0 = \{1, y, y^2, y^3, y^4\},$$

$$\Gamma_1 = \{1, x, y, xy, y^2\},$$

$$\Gamma_2 = \{1, x, x^2, x^3, x^4\}.$$

The **T**-invariant G-cluster corresponding to Γ_1 is defined by the ideal

$$I_{\Gamma_1} = \langle x^2, xy^2, y^3 \rangle.$$

Here the deformation of $Z(I_{\Gamma_1})$ is given by the parameters λ, ν with

$$x^2 = \lambda y, \quad y^3 = \nu x, \quad xy^2 = \lambda \nu.$$

This gives an affine open set $U(\Gamma_1) = \operatorname{Spec} \mathbb{C}[\lambda, \nu]$ which is in G-Hilb \mathbb{C}^2 . For a point $(\lambda, \nu) \in \mathbb{C}^2 \simeq U(\Gamma_1)$, it parametrises the G-cluster given by

$$I_{(\lambda,\mu)} := \langle x^2 - \lambda y, y^3 - \nu x, xy^2 - \lambda \nu \rangle$$

which is a G-invariant ideal of $\mathbb{C}[x,y]$.

3.3. A-graphs for $n \geq 3$ Let A_n be the group of type $\frac{1}{r}(1,\ldots,1,a)$ acting on \mathbb{C}^n with (r,a)=1. We use the coordinates x_1,\ldots,x_{n-1},y .

Theorem 3.7. Let $A_n \subset GL(n,\mathbb{C})$ be the group of type $\frac{1}{r}(1,\ldots,1,a)$ with (r,a)=1. If the $\frac{r}{a}=[a_1,a_2,\ldots,a_k]$, then the following hold.

- (i) The number of A_n -graphs is nk k + 1.
- (ii) A_n -Hilb \mathbb{C}^n is smooth and irreducible. Thus A_n -Hilb \mathbb{C}^n is a resolution of the quotient singularity \mathbb{C}^n/A_n .

Proof. First consider the A_n -graph Γ^0 containing only powers of y. This means Γ^0 does not contain any other x_j 's. Then Γ^0 should be

$$\Gamma^0 = \{1, y, \dots, y^{r-1}\}.$$

For this A_n -graph, we have

$$S(\Gamma^0) = \mathbb{C}\left[\frac{x_1}{y}, \dots, \frac{x_{n-1}}{y}, y^r\right]$$
 and $U(\Gamma^0) \simeq \mathbb{C}^n$.

Suppose that Γ is an A_n -graph containing x_j for some $1 \leq j \leq n-1$. Since x_l 's are of the same weight, Γ cannot contain any x_l with $j \neq l$. Thus Γ consists of monomials in x_j and y. Thus Γ can be seen as an A_2 -graph with considering the coordinate x_j , y. Thus Γ should correspond to one of A_2 -graphs in Proposition 3.4, say Γ_i for some $1 \leq i \leq k$. Since $S(\Gamma_i) = \mathbb{C}\left[\frac{x^{\beta_i}}{y^{\alpha_i}}, \frac{y^{\alpha_{i+1}}}{x^{\beta_{i+1}}}\right]$, we have

$$S(\Gamma) = \mathbb{C}\left[\frac{x_1}{x_j}, \dots, \frac{x_{n-1}}{x_j}, \frac{x_j^{\beta_i}}{y^{\alpha_i}}, \frac{y^{\alpha_{i+1}}}{x_j^{\beta_{i+1}}}\right]$$
 and $U(\Gamma) \simeq \mathbb{C}^n$.

Therefore, there are (nk - k + 1) A_n -graphs which yield a smooth affine toric open cover of Hilb^{A_n} \mathbb{C}^n . Note that for each A_n -graph Γ , the toric cone $\sigma(\Gamma)$ is a smooth n-dimensional cone.

To complete the proof, it remains to show the irreducibility of A_n -Hilb \mathbb{C}^n . First note that A_2 -Hilb \mathbb{C}^2 is irreducible. From Remark 2.3, it is sufficient to show the deformation space $D(\Gamma)$ is equal to $U(\Gamma)$ for each Γ . For the A_n -graph Γ^0 , it is straightforward to see $D(\Gamma^0) = U(\Gamma^0)$.

Let Γ be an A_n -graph containing x_j for some $1 \leq j \leq n-1$, which corresponds to an A_2 -graph Γ_i . Note that the action of x_j and y is already given by that of x encoded in the A_2 -graph Γ_i . So the remaining deformation parameters are the parameters corresponding to the action of x_l for $l \neq j$, which are denoted by

$$\{\lambda_{l,\rho} | l \neq j, \rho \in A_n^{\vee}\}$$

in Section 2.3. Note that the weight of x_l is equal to x_j which is denoted by ρ_1 . For the trivial character $\rho_0 \in A_n^{\vee}$, the parameters λ_{l,ρ_0} are given by

$$(*) x_l \cdot 1 = \lambda_{l,\rho_0} x_j.$$

With parameters $\{\lambda_{j,\rho} \mid \rho \in A_n^{\vee}\}$, these parameters λ_{l,ρ_0} determine other parameters as follows: Let $\rho \in A_n^{\vee}$. There exists a unique monomial $\mathbf{m}_{\rho} \in \Gamma$ of weight ρ . The parameter $\lambda_{l,\rho}$ is given by $x_l \cdot \mathbf{m}_{\rho} = \lambda_{l,\rho} \mathbf{m}_{\rho\rho_1}$. Here using Equation (*), we have

$$x_l \cdot \mathbf{m}_{\rho} = \lambda_{l,\rho_0} x_j \cdot \mathbf{m}_{\rho} = \lambda_{l,\rho_0} \lambda_{j,\rho} \mathbf{m}_{\rho\rho_1}.$$

This induces $\lambda_{l,\rho} = \lambda_{l,\rho_0} \lambda_{j,\rho}$ because $\mathbf{m}_{\rho\rho_1}$ is a base of the vector space $H^0(\mathcal{O}_{Z(\Gamma)})$. This implies that from 2-dimensional cases,

$$D(\Gamma) \simeq D(\Gamma_i) \times \mathbb{C}^{n-2} \simeq \mathbb{C}^n$$
.

This implies that A_n -Hilb \mathbb{C}^n is irreducible.

ACKNOWLEDGMENT

I would like to thank the referees for their careful reading.

References

- T. Bridgeland, A. King & M. Reid: The McKay correspondence as an equivalence of derived categories. J. Amer. Math. Soc. 14 (2001), no. 3, 535-554.
- 2. D. Cox, J. Little & H. Schenck: Toric Varieties, Graduate Studies in Mathematics 124. American Mathematical Society, Providence, RI, 2011.
- 3. A. Craw, D. Maclagan & R.R. Thomas: Moduli of McKay quiver representations I: The coherent component. Proc. Lond. Math. Soc. (3) **95** (2007), no. 1, 179-198.

- 4. A. Ishii: On the McKay correspondence for a finite small subgroup of $GL(2, \mathbb{C})$. J. Reine Angew. Math. **549** (2002), 221-233.
- Y. Ito & I. Nakamura: Hilbert schemes and simple singularities. New trends in algebraic geometry (Warwick, 1996), 151-233, London Math. Soc. Lecture Note Ser. 264, Cambridge Univ. Press, Cambridge, 1999.
- S.-J. Jung: Terminal quotient singularities in dimension three via variation of GIT. J. Algebra 468 (2016), 354-394.
- 7. I. Nakamura: Hilbert schemes of abelian group orbits. J. Algebraic. Geom. 10 (2001), no. 4, 757-779.
- 8. M. Reid: Surface cyclic quotient singularities and HirzebruchJung resolutions. preprint(1997), Available at: homepages.warwick.ac.uk/masda/surf/more/cyclic.pdf.

Department of Mathematics Education, Institute of Pure and Applied Mathematics, Jeonbuk National University, Jeonju 54896, Korea

Email address: seungjo@jbnu.ac.kr