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A-HILBERT SCHEMES FOR
1

r
(1n−1, a)

Seung-Jo Jung

Abstract. For a finite group G ⊂ GL(n,C), the G-Hilbert scheme is a fine moduli

space of G-clusters, which are 0-dimensionalG-invariant subschemes Z withH0(OZ)

isomorphic to C[G]. In many cases, the G-Hilbert scheme provides a good resolution

of the quotient singularity Cn/G, but in general it can be very singular. In this note,

we prove that for a cyclic group A ⊂ GL(n,C) of type 1
r
(1, . . . , 1, a) with r coprime

to a, A-Hilbert Scheme is smooth and irreducible.

1. Introduction

Let G be a finite group in GL(n,C). A 0-dimensional G-invariant subscheme

Z ⊂ Cn is called a G-cluster if H0(OZ) is isomorphic to the regular representation

C[G] of G as a C[G]-module. Ito–Nakamura[5] introduced the G-Hilbert scheme

G-HilbCn which is a fine moduli space of G-clusters. Furthermore, they proved

that if G ⊂ SL(2,C), then G-HilbCn is the minimal resolution of C2/G. For various

cases, G-HilbCn provides a good resolution of the quotient singularity Cn/G. For

example, for a finite subgroup G ⊂ SL(3,C), the G-Hilbert scheme G-HilbC3 is a

crepant resolution of C3/G proved in [1].

For an abelian group A, in [7] Nakamura introduced the notion of A-graphs

corresponding to torus-invariant A-clusters. Using A-graphs, he described HilbA

which is an irreducible component of A-Hilb. Using his idea, in many cases, A-Hilb

can be calculated.
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Let An ⊂ GL(n,C) be the finite group of type 1
r (1, . . . , 1, a) with r coprime to a.

We use the coordinate x1, . . . , xn−1, y. The thing which makes this group special is

that the weights of xj ’s are the same. Thus we can deduce the calculation to the

case where n = 2. In this note, from the well-knwon description of A-Hilb for the

group of type 1
r (1, a) (e.g. [8]), we calculate An-HilbCn.

The rest of the paper is organized as follows. Section 2 introduces the toric

description due to Nakamura[7]. Section 3 is devoted to description of A-HilbCn for

the group of type 1
r (1, . . . , 1, a).

2. A-Hilb via Nakamura’s A-graphs

2.1. Toric geometry for cyclic quotient singularities Let A ⊂ GL(n,C) be

the finite group of type 1
r (a1, . . . , an), i.e. A is the subgroup generated by the diagonal

matrix diag(ϵa1 , . . . , ϵan) where ϵ is a primitive r-th root of unity. Define the lattice

L = Zn + Z · 1
r
(a1, . . . , an)

which is an overlattice of L = Zn of finite index. Let {e1, . . . , en} be the standard

basis of L = Zn. Consider the dual lattices M = HomZ(L,Z) and M = HomZ(L,Z).
The embedding of A into the torus T := (C×)n ⊂ GL(n,C) induces a surjective

homomorphism

wt: M −→ A∨

where A∨ := Hom(A,C×) is the character group of A. The group A acts on a

monomial xm = xm1
1 xm2

2 · · ·xmn
n by

g : xm 7→ ϵρ(g)xm,

where ρ = wt(xm). In this case, we call ρ the weight of xm. As M is the kernel

of the map wt, we have that xm is A-invariant if and only if m ∈ M . Thus the

dual lattices M and M can be identified with Laurent monomials and A-invariant

Laurent monomials, respectively. Furthermore, define

M≥0 := {xm = xm1
1 xm2

2 · · ·xmn
n ∈ M | mi ≥ 0 ∀i}.

Let σ+ be the cone in LR := L⊗Z R generated by e1, e2, . . . , en. Then:
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(i) the cone σ+ with the lattice L defines X = An/A as a toric variety.

(ii) the cone σ+ with the lattice L defines Cn as a toric variety.

(iii) The quotient map Cn → X is induced by the inclusion L ⊂ L.

2.2. Nakamura’s A-graphs For abelian group cases, Nakamura[7] provided a

toric method to construct A-Hilb using A-graphs.

Definition 2.1. A set Γ of monomials in C[x1, . . . , xn] is called an A-graph if Γ

satisfies:

(i) 1 ∈ Γ.

(ii) The restriction map wt |Γ : Γ → A∨ is bijective, i.e. for each weight ρ ∈ A∨,

there exists a unique monomial xm ∈ Γ with wt(xm) = ρ.

(iii) For a monomial xm ∈ Γ, if xn divides xm, then xn is also in Γ.

For an A-graph Γ, let wtΓ denote the composition of wt and (wt |Γ)−1:

wtΓ := (wt |Γ)−1 ◦ wt: M → Γ,

i.e. wtΓ(x
m) is the unique monomial in Γ whose weight is the same as xm.

For an A-graph Γ, we can define an A-invariant ideal IΓ generated by all mono-

mials not in Γ, i.e.

IΓ = ⟨xm | xm ̸∈ Γ⟩.

This ideal defines an A-cluster Z(Γ) whose corresponding ideal IΓ. As IΓ is a

monomial ideal, Z is T-invariant. In fact, the converse is true: for a T-invariant

A-cluster Z, there is an A-graph Γ such that IΓ is the defining ideal of Z. This

means that we have a bijection between the set of T-invariant A-clusters and the

set of A-graphs.

2.3. Deformation space D(Γ) For an A-graph, we define the deformation space

D(Γ) of IZ as follows. First, for each weight ρ ∈ A∨, mρ denote the unique mono-

mial of weight ρ in Γ. The A-graph Γ fixes the monomial basis of the vector space

H0(OZ(Γ)). Let Z be an A-cluster such that H0(OZ) has monomial basis Γ. Giv-

ing the A-cluster structure on the vector space H0(OZ) is equivalent to have nr
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parameters coming from the C[x1, . . . , xn]-action

{λj,ρ | 1 ≤ j ≤ n, ρ ∈ A∨}

with

xj ·mρ = λj,ρmwtΓ(xj ·mρ) in H0(OZ).

From xixj′ · mρ = xj · xj′ · mρ, these parameters satisfy “commutative” relations.

From this description, we have an affine open setD(Γ) in A-HilbCn. (For details, see

[6]) In general, it is hard to calculate D(Γ). But D(Γ) has an irreducible component

which is described below.

2.3.1. Local charts and G-graphs For an A-graph Γ, define S(Γ) to be the

subsemigroup of M generated by
xn · xm

wtΓ(xn · xm)
for all xn ∈ M≥0 and xm ∈ Γ. Define

a cone σ(Γ) in LR = Rn as follows:

σ(Γ) = S(Γ)∨

=

{
u ∈ LR |

⟨
u,

xn · xm

wtΓ(xn · xm)

⟩
≥ 0, ∀xn ∈ M≥0, xm ∈ Γ

}
.

Observe that:

(i)
(
M≥0 ∩M

)
⊂ S(Γ),

(ii) σ(Γ) ⊂ σ+,

(iii) S(Γ) ⊂
(
σ(Γ)∨ ∩M

)
.

Note that S(Γ) is finitely generated as a semigroup. Thus we can define an affine

toric variety associated to the semigroup S(Γ). Define two affine toric varieties:

U(Γ) := SpecC[S(Γ)],

Uν(Γ) := SpecC[σ∨(Γ) ∩M ].

Note that Uν(Γ) is the normalization of U(Γ) and that the torus SpecC[M ] of U(Γ)

is isomorphic to (C×)n/A.

Even though A-HilbCn does not need to be irreducible, A-HilbCn has a unique

irreducible component HilbA containing the torus (C×)n/A by Craw–Maclagan–

Thomas [3]. The irreducible component HilbA is called the birational component of

A-HilbCn.



A-HILBERT SCHEMES 63

Theorem 2.2 ([3, 7, 6]). Let A be an abelian group in GL(n,C). Then:

(i) The birational component HilbA is a not-necessarily-normal toric variety

birational to Cn/A.

(ii) The variety HilbA is covered by U(Γ) for all A-graphs Γ.

Remark 2.3 ([6]). Since each irreducible component of A-HilbCn should have T-

invariant points, to prove A-HilbCn is irreducible, it suffices to show the following

for each A-graph Γ.

(i) σ(Γ) is an n-dimensional cone, which implies that U(Γ) contains a T-

invariant point corresponding to IΓ.

(ii) The deformation space D(Γ) of IΓ is equal to U(Γ).

3. 1
r
(1n−1, a) Cases

In this section, we calculate A-Hilb for 1
r (1, . . . , 1, a) via finding all A-graphs.

3.1. Hirzebruch–Jung continued fraction We review the Hirzebruch–Jung con-

tinued fraction of rational numbers (see e.g. [8]). Let r, a be positive integers

such that a < r. Assume further that r and a are coprime. An expression r
a =

[a1, a2, . . . , ak] is called the Hirzebruch-Jung continued fraction of r
a if

r

a
= a1 −

1

a2 −
1

· · · − 1
ak

.

Consider the lattice

L = Z2 + Z · 1
r
(1, a),

which is an overlattice of Z2 of finite index. Define

w0 = (0, 1),

w1 =
1

r
(1, a),

wi+1 = aiwi − wi−1 for i = 1, 2, . . . , k.
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By construction, we get wk+1 = (1, 0). Define for i = 0, 1, . . . , k + 1, let

(3.1) wi =
1

r
(αi, βi).

The key picture is that {wi, wi+1} form a Z-basis of L, i.e. the cone

σi := Cone(wi, wi+1)

defines a smooth affine toric variety. Moreover the following holds.

Theorem 3.2 (e.g. [8, 2]). Let Σ be the minimal toric fan containing all σi’s

for 0 ≤ i ≤ k. Then the toric variety corresponding to the fan Σ is the minimal

resolution of the quotient singularity of type 1
r (1, a).

Example 3.3. Let G be the group of type 1
5(1, 2). Then the Hirzebruch–Jung

continued fraction of 5
2 is

5

2
= [3, 2].

Then in the notation above,

w0 = (0, 1), w1 =
1

5
(1, 2), w2 =

1

5
(3, 1), w3 = (1, 0).

Let Σ be the minimal toric fan containing the following three cones:

σ0 = Cone(w0, w1), σ1 = Cone(w1, w2), σ2 = Cone(w2, w3).

Then the fan Σ defines the minimal resolution of the quotient singularity C2/G.

From toric geometry, the minimal resolution can be covered by three affine toric

open sets corresponding to the three 2-dimensional toric cones. For example, the

toric cone σ1 = Cone(w1, w2) corresponds to the affine toric variety SpecC[x2

y , y
3

x ]

which is smooth.

3.2. A-graphs for n = 2 Let A2 be the group of type 1
r (1, a) with coordinates

x, y. By [4], it is well-known that A2-HilbC2 is the minimal resolution of C2/A2.

Therefore the toric variety in Theorem 3.2 is isomorphic to A2-HilbC2. From this

fact, we can find all A2-graphs.
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Proposition 3.4. For A2 of type 1
r (1, a) with (r, a) = 1 and r

a = [a1, a2, . . . , ak],

the number of A2-graphs is (k + 1). More precisely, for each 0 ≤ i ≤ k, the toric

cone σi corresponds to an A2-graph Γi with

S(Γi) = σ∨
i ∩M.

Moreover, the A2-HilbC2 is irreducible.

In particular, we have

Γ0 = {1, y, . . . , yr−1}, Γk = {1, x, . . . , xr−1}.

Remark 3.5. From toric geometry (e.g. [2, 8]), for each 0 ≤ i ≤ k, we have

S(Γi) = C
[
xβi

yαi ,
yαi+1

xβi+1

]
. Moreover, the A2-graph Γi contains at least the following

monomials

1, x, . . . , xβi−1, y, . . . , yαi+1−1.

Example 3.6. Let G be the group of type 1
5(1, 2). Since the minimal resolution

of the quotient singularity C2/G is isomorphic to G-HilbC2. Thus the toric fan of

G-HilbC2 has three 2-dimensional cones:

σ0 = Cone(w0, w1), σ1 = Cone(w1, w2), σ2 = Cone(w2, w3).

The corresponding G-graphs are

Γ0 = {1, y, y2, y3, y4},

Γ1 = {1, x, y, xy, y2},

Γ2 = {1, x, x2, x3, x4}.

The T-invariant G-cluster corresponding to Γ1 is defined by the ideal

IΓ1 = ⟨x2, xy2, y3⟩.

Here the deformation of Z(IΓ1) is given by the parameters λ, ν with

x2 = λy, y3 = νx, xy2 = λν.

This gives an affine open set U(Γ1) = SpecC[λ, ν] which is in G-HilbC2. For a point

(λ, ν) ∈ C2 ≃ U(Γ1), it parametrises the G-cluster given by

I(λ,µ) := ⟨x2 − λy, y3 − νx, xy2 − λν⟩
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which is a G-invariant ideal of C[x, y].

3.3. A-graphs for n ≥ 3 Let An be the group of type 1
r (1, . . . , 1, a) acting on Cn

with (r, a) = 1. We use the coordinates x1, . . . , xn−1, y.

Theorem 3.7. Let An ⊂ GL(n,C) be the group of type 1
r (1, . . . , 1, a) with (r, a) = 1.

If the r
a = [a1, a2, . . . , ak], then the following hold.

(i) The number of An-graphs is nk − k + 1.

(ii) An-HilbCn is smooth and irreducible. Thus An-HilbCn is a resolution of

the quotient singularity Cn/An.

Proof. First consider the An-graph Γ0 containing only powers of y. This means Γ0

does not contain any other xj ’s. Then Γ0 should be

Γ0 = {1, y, . . . , yr−1}.

For this An-graph, we have

S(Γ0) = C
[
x1
y
, . . . ,

xn−1

y
, yr

]
and U(Γ0) ≃ Cn.

Suppose that Γ is an An-graph containing xj for some 1 ≤ j ≤ n− 1. Since xl’s

are of the same weight, Γ cannot contain any xl with j ̸= l. Thus Γ consists of

monomials in xj and y. Thus Γ can be seen as an A2-graph with considering the

coordinate xj , y. Thus Γ should correspond to one of A2-graphs in Proposition 3.4,

say Γi for some 1 ≤ i ≤ k. Since S(Γi) = C
[
xβi

yαi ,
yαi+1

xβi+1

]
, we have

S(Γ) = C

[
x1
xj

, . . . ,
xn−1

xj
,
xβi
j

yαi
,
yαi+1

x
βi+1

j

]
and U(Γ) ≃ Cn.

Therefore, there are (nk − k + 1) An-graphs which yield a smooth affine toric open

cover of HilbAn Cn. Note that for each An-graph Γ, the toric cone σ(Γ) is a smooth

n-dimensional cone.

To complete the proof, it remains to show the irreducibility of An-HilbCn. First

note that A2-HilbC2 is irreducible. From Remark 2.3, it is sufficient to show the

deformation space D(Γ) is equal to U(Γ) for each Γ. For the An-graph Γ0, it is

straightforward to see D(Γ0) = U(Γ0).
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Let Γ be an An-graph containing xj for some 1 ≤ j ≤ n − 1, which corresponds

to an A2-graph Γi. Note that the action of xj and y is already given by that of

x encoded in the A2-graph Γi. So the remaining deformation parameters are the

parameters corresponding to the action of xl for l ̸= j, which are denoted by

{λl,ρ | l ̸= j, ρ ∈ A∨
n}

in Section 2.3. Note that the weight of xl is equal to xj which is denoted by ρ1. For

the trivial character ρ0 ∈ A∨
n , the parameters λl,ρ0 are given by

(*) xl · 1 = λl,ρ0 xj .

With parameters {λj,ρ | ρ ∈ A∨
n}, these parameters λl,ρ0 determine other parameters

as follows: Let ρ ∈ A∨
n . There exists a unique monomial mρ ∈ Γ of weight ρ. The

parameter λl,ρ is given by xl ·mρ = λl,ρmρρ1 . Here using Equation (*), we have

xl ·mρ = λl,ρ0 xj ·mρ = λl,ρ0λj,ρmρρ1 .

This induces λl,ρ = λl,ρ0λj,ρ because mρρ1 is a base of the vector space H0(OZ(Γ)).

This implies that from 2-dimensional cases,

D(Γ) ≃ D(Γi)× Cn−2 ≃ Cn.

This implies that An-HilbCn is irreducible. �
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