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A REFINEMENT OF THE JENSEN-SIMIC-MERCER

INEQUALITY WITH APPLICATIONS TO ENTROPY

Yamin Sayyari

Abstract. The Jensen, Simic and Mercer inequalities are very important inequali-
ties in theory of inequalities and some results are devoted to this inequalities. In this
paper, firstly, we establish extension of Jensen-Simic-Mercer inequality. After that,
we investigate bounds for Shannons entropy of a probability distribution. Finally,
We give some new applications in analysis.

1. Introduction

Jensen, Simic and Mercer inequalities are important for obtaining bounds for

entropies. In this paper, by applying an extensions of Simic’s inequality and Mercer’s

inequality, we obtain some estimates for the Shannon’s entropy. Let I := [a, b] be an

interval, x := {xi}ni=1 ⊆ I and p := {pi}n1 ⊆ [0, 1] with
∑n

i=1 pi = 1. The following

inequality is well known in the literature as Jensens inequality.

Theorem 1.1 ([10, Jensen’s inequality]). If f is a convex function on an interval

I, x := {xi}ni=1 ⊆ I and
∑n

i=1 pi = 1, then

0 ≤
n∑

i=1

pif(xi)− f(

n∑
i=1

pixi) := Jf (p,x).

In [17], Simic proved the following extension of Jensens inequality known as the

Jensen Simic inequality.

Theorem 1.2. If f is a convex function on an interval I, xi ∈ I, 1 ≤ i ≤ n and∑n
i=1 pi = 1, then
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0 ≤ max
1≤r<s≤n

{prf(xr) + psf(xs)− (pr + ps)f(
prxr + psxs
pr + ps

)}

≤
n∑

i=1

pif(xi)− f(

n∑
i=1

pixi) ≤ f(a) + f(b)− 2f(
a+ b

2
).

Theorems 1.1 and 1.2 yield the following corollary.

Corollary 1.3. If f is a convex function on an an interval I, xi ∈ I, 1 ≤ i ≤ n

and
∑n

i=1 pi = 1, then

0 ≤ max
r,s

{prf(xr) + psf(xs)− (pr + ps)f(
prxr + psxs
pr + ps

)}

≤
n∑

i=1

pif(xi)− f(

n∑
i=1

pixi) ≤ f(a) + f(b)− 2f(
a+ b

2
).

A variant of Jensens inequality is obtained by Mercer [9].

Theorem 1.4 ([9]). If f is a convex function on an interval I := [a, b], xi ∈ I,

1 ≤ i ≤ n and
∑n

i=1 pi = 1, then

If (p,x) := f(a+ b−
n∑

i=1

pixi) +
n∑

i=1

pif(xi) ≤ f(a) + f(b).(1.1)

2. Refinement of Jensen-Simic-Mercer Inequality

In this section, we extend the Jensen-Mercer inequality (1.1) for convex functions.

Theorem 2.1. Let f be a convex function on an interval I, xi ∈ I, 1 ≤ i ≤ n and∑n
i=1 pi = 1, then

2f(
a+ b

2
) ≤ f(a+ b−

n∑
i=1

pixi) +

n∑
i=1

pif(xi) ≤ f(a) + f(b)

−max
r,s

{prf(a+ b− xr) + psf(a+ b− xs)− (pr + ps)f(a+ b− prxr + psxs
pr + ps

)}

≤ f(a) + f(b).
(2.1)
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Corollary 2.2. Let f be a convex function on I, then

2f(
a+ b

2
) ≤ f(a+ b−

n∑
i=1

pixi) +
n∑

i=1

pif(xi) ≤ f(a) + f(b)

− {prf(a+ b− xr) + psf(a+ b− xs)− (pr + ps)f(a+ b− prxr + psxs
pr + ps

)}

≤ f(a) + f(b),

for every r, s ∈ {1, ..., n}.

Theorem 2.3. If f is convex function on I, µ := min{xi} and ν := max{xi}, then

2f(
µ+ ν

2
) ≤ f(µ+ ν − 1

n

n∑
i=1

xi) +
1

n

n∑
i=1

f(xi)

≤ f(µ) + f(ν)− 1

n
{f(µ) + f(ν)− 2f(

µ+ ν

2
)}.

3. Applications

In this section, we present some applications of Theorem 2.1 in information theory

and analysis.

3.1. Applications in information theory

Definition 3.1. The Shannon entropy of a positive probability distribution P =

(p1, ..., pn) is defined by H(p) :=
∑n

i=1 pi log
1
pi
.

Proposition 3.2. Define µ := min1≤i≤n{pi} and ν := max1≤i≤n{pi}. Then

log(
4µ2ν2

(µ+ ν)2
) ≤ log(

µν

µ+ ν − nµν
)−H(p)

≤ log(µν)− µ log(
µ2 + ν2

µ(µ+ ν)
)− ν log(

µ2 + ν2

ν(µ+ ν)
)(3.1)

Proposition 3.3. Define µ := min1≤i≤n{pi} and ν := max1≤i≤n{pi}. Then

(µ+ ν) log(
µ+ ν

2
) ≤ (µ+ ν − 1

n
) log(µ+ ν − 1

n
)−H(p)

≤ µ logµ+ ν log ν − 1

n
[µ log(

2µ

µ+ ν
) + ν log(

2ν

µ+ ν
)].(3.2)
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3.2. Applications in analysis Let x = {xi}ni=1 be a positive real sequence and

A :=
1

n

n∑
i=1

xi and G := (
n∏

i=1

xi)
1
n

denote the usual arithmetic and geometric means of {xi}, respectively. Denote

µ := min{xi}, ν := max{xi}, Ã := µ + ν − A, G̃ := µν
G , A(µ, ν) := µ+ν

2 and

G(µ, ν) :=
√
µν. From (2.1) we conclude the following result.

Proposition 3.4. Let x = {xi}ni=1 and xi > 0 for all i = 1, ..., n, µ = min{xi} and

ν = max{xi}, then

G̃ ≤ G̃[
A(µ, ν)

G(µ, ν)
]
2
n ≤ Ã ≤ [A(µ, ν)]2

G
.

Remark 3.5. Proposition 3.4 is equivalent to

G̃ ≤ (
Ã+A

2
)
2
n

G̃
n
√
G̃G

≤ Ã ≤ (Ã+A)2

4G
.

4. Proofs

Proof of Theorem 2.1. Since {xi}i ⊆ [a, b], there is a sequence {λi}i(0 ≤ λi ≤ 1),

such that xi = λia+ (1− λi)b. Hence,

f(a+ b−
n∑

i=1

pixi) +
n∑

i=1

pif(xi)

= f(a+ b−
n∑

i=1

pi(λia+ (1− λi)b)) +

n∑
i=1

pif(λia+ (1− λi)b)

≥ f(a+ b− a

n∑
i=1

piλi − b

n∑
i=1

pi(1− λi)) + f(a

n∑
i=1

piλi + b

n∑
i=1

pi(1− λi)).

Denoting p :=
∑n

i=1 piλi and q := 1−
∑n

i=1 piλi. Consequently,

If (p,x) ≥ f(a+ b− pa− qb) + f(pa+ qb)

= f(qa+ qb) + f(pa+ qb)

≥ 2f(
pa+ qb

2
+

qa+ pb

2
) = 2f(

a+ b

2
).(4.1)
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Here the first inequality holds. On the other hand, by the use of Corollary 1.3, we

have

f(a+ b−
n∑

i=1

pixi) +
n∑

i=1

pif(xi) = f(
n∑

i=1

pi(a+ b− xi)) +
n∑

i=1

pif(xi)

≤
n∑

i=1

pif(a+ b− xi)−max
r,s

{prf(a+ b− xr) + psf(a+ b− xs)

− (pr + ps)f(
pr(a+ b− xr) + ps(a+ b− xs)

pr + ps
)}+

n∑
i=1

pif(xi)

=

n∑
i=1

pif(a+ b− xi)−max
r,s

{prf(a+ b− xr) + psf(a+ b− xs)

− (pr + ps)f(a+ b− prxr + psxs
pr + ps

)}+
n∑

i=1

pif(xi).

Then from Mercers inequality (1.1), it follows that

f(a+ b−
n∑

i=1

pixi) +
n∑

i=1

pif(xi)

≤
n∑

i=1

pi(f(a) + f(b)− f(xi))−max
r,s

{prf(a+ b− xr) + psf(a+ b− xs)

− (pr + ps)f(a+ b− prxr + psxs
pr + ps

)}+
n∑

i=1

pif(xi) = f(a) + f(b)

−max
r,s

{prf(a+ b− xr) + psf(a+ b− xs)

− (pr + ps)f(a+ b− prxr + psxs
pr + ps

)},

which completes the proof. �

Proof of Corollary 2.2. Since

prf(a+ b− xr) + psf(a+ b− xs)− (pr + ps)f(a+ b− prxr + psxs
pr + ps

) ≥ 0

for all r, s = 1, ..., n, the results follow from (2.1). �

Proof of Theorem 2.3. Let 1 ≤ µ ≤ ν ≤ n. Since

pµf(a+ b− xµ) + pνf(a+ b− xν)− (pµ + pν)f(a+ b− pµxµ + pνxν
pµ + pν

)

max
r,s

{prf(a+ b− xr) + psf(a+ b− xs)− (pr + ps)f(a+ b− prxr + psxs
pr + ps

)},
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we have

2f(
a+ b

2
) ≤ f(a+ b−

n∑
i=1

pixi) +
n∑

i=1

pif(xi) ≤ f(a) + f(b)

− {prf(a+ b− xr) + psf(a+ b− xs)− (pr + ps)f(a+ b− prxr + psxs
pr + ps

)},

for all r, s ∈ {1, ..., n}}. Now, putting pi = 1
n , i = 1, ..., n, xr = x1 = a and

xs = xn = b, which provides the desired inequality. �

Proof of Proposition 3.2. Applying Corollary 2.2 with f(x) = − log(x) and putting

xi =
1
pi

for all i = 1, ..., n, a = xr =
1
ν and b = xs =

1
µ , we get

−2 log(
µ+ ν

2µν
) ≤ − log(

µ+ ν − nµν

µν
)−

n∑
i=1

pi log(
1

pi
) ≤ log ν + logµ

− {−ν log(
1

µ
)− µ log(

1

ν
) + (ν + µ) log(

1

ν
+

1

µ
− 2

ν + µ
)},

which completes the proof. �

Proof of Proposition 3.3. Let f(x) = x log x, a = µ and b = ν. Then apply Theorem

2.3 with xi replaced by pi, we get

(µ+ ν) log(
µ+ ν

2
) ≤ (µ+ ν − 1

n
) log(µ+ ν − 1

n
) +

1

n

n∑
i=1

pi log pi

≤ µ logµ+ ν log ν − 1

n
{µ logµ+ ν log ν − (µ+ ν) log(

µ+ ν

2
)},

after some calculations the desired assertion follows. �

Proof of Proposition 3.4. Applying Theorem 2.1 with f(x) = − log x, pi =
1
n for all

i = 1, ..., n, a = min{xi}ni=1 and b = max{xi}ni=1, the desired results follow. �
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