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SOME RESULTS ON UNIQUENESS OF CERTAIN TYPE OF

SHIFT POLYNOMIALS SHARING A SMALL FUNCTION

Biswajit Saha a, ∗, Subrata Pal b and Tanmay Biswas c

Abstract. The purpose of the paper is to study the uniqueness problems of certain
type of difference polynomials sharing a small function. With the concept of weakly
weighted sharing and relaxed weighted sharing we obtain some results which extend
and generalize some results due to P. Sahoo and G. Biswas [Tamkang Journal of
Mathematics, 49(2)(2018), 85-97].

1. Introduction

By a meromorphic function we shall always mean a meromorphic function in the

complex plane. We assume that the reader is familiar with the standard notations

in Nevanlinna’s value distribution theory of meromorphic functions as explained

in [7, 8, 20]. For a nonconstant meromorphic function h, we denote by T (r, h)

the Nevanlinna characteristic function of h and by S(r, h) any quantity satisfying

S(r, h) = o{T (r, h)} as r → ∞, possibly outside of a set of finite linear measure.

We say that the meromorphic function α(z) is a small function of f, if T (r, α(z)) =

S(r, f).

Let k be a positive integer or infinity and a ∈ C ∪ {∞}. Set E(a, f) = {z :

f(z)− a = 0}, where a zero with multiplicity k is counted k times. If the zeros are

counted only once, then we denote the set by E(a, f). Let f and g be two nonconstant

meromorphic functions. If E(a, f) = E(a, g), then we say that f and g share the

value a CM (counting multiplicities). On the other hand, if E(a, f) = E(a, g), then

we say that f and g share the value a IM (ignoring multiplicities). We denote by

Ek)(a, f) the set of all a-points of f with multiplicities not exceeding k, where an

a-point is counted according to its multiplicity. Also we denote by Ek)(a, f) the
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set of distinct a-points of f with multiplicities not greater than k. We denote by

Nk)(r, a; f) the counting function of zeros of f − a with multiplicity less or equal to

k, and by Nk)(r, a; f) the corresponding one for which multiplicity is not counted.

Let N(k(r, a; f) be the counting function of zeros of f − a with multiplicity at least

k and N (k(r, a; f) the corresponding one for which multiplicity is not counted. Set

Nk(r, a; f) = N(r, a; f) +N (2(r, a; f) + ...+N (k(r, a; f).

Let NE(r, a; f, g) (NE(r, a; f, g)) be the counting function (reduced counting func-

tion) of all common zeros of f − a and g − a with the same multiplicities and

N0(r, a; f, g) (N0(r, a; f, g)) the counting function (reduced counting function) of all

common zeros of f − a and g − a ignoring multiplicities. If

N(r, a; f) +N(r, a; g)− 2NE(r, a; f, g) = S(r, f) + S(r, g),

then we say that f and g share a “CM”. On the other hand, if

N(r, a; f) +N(r, a; g)− 2N0(r, a; f, g) = S(r, f) + S(r, g),

then we say that f and g share a “IM”.

We now explain in the following definition the notion of weakly weighted sharing

which was introduced by Lin and Lin [10].

Definition 1.1 ([10]). Let f and g share a “IM” and k be a positive integer or

∞. N
E
k)(r, a; f, g) denotes the reduced counting function of those a-points of f

whose multiplicities are equal to the corresponding a-points of g, and both of their

multiplicities are not greater than k. N
0
(k(r, a; f, g) denotes the reduced counting

function of those a-points of f which are a-points of g, both of their multiplicities

are not less than k.

Definition 1.2 ([10]). Let a ∈ C ∪ {∞} and k be a positive integer or ∞. If

Nk)(r, a; f)−N
E
k)(r, a; f, g) = S(r, f),

Nk)(r, a; g)−N
E
k)(r, a; f, g) = S(r, g),

N (k+1(r, a; f)−N
0
(k+1(r, a; f, g) = S(r, f),

N (k+1(r, a; g)−N
0
(k+1(r, a; f, g) = S(r, g),

or if k = 0 and

N(r, a; f)−N0(r, a; f, g) = S(r, f),

N(r, a; g)−N0(r, a; f, g) = S(r, g),
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then we say f and g weakly share a with weight k and we write f and g share

“(a, k)” to mean that f, g weakly share a with weight k.

Now it is clear from definition 1.2 that weakly weighted sharing is a scaling

between IM and CM.

In 2007, A. Banerjee and S. Mukherjee [2] introduced a new type of sharing which

is weaker than weakly weighted sharing and is defined as follows.

Definition 1.3 ([2]). We denote by N(r, a; f |= p; |= q) the reduced counting

function of common a-points of f and g with multiplicities p and q, respectively.

Definition 1.4 ([2]). Let a ∈ C ∪ {∞} and k be a positive integer or ∞. Suppose

that f and g share a “IM”. If for p ̸= q,∑
p,q≤k

N(r, a; f |= p; g |= q) = S(r),

then we say that f and g share a with weight k in a relaxed manner and in that

case we write f and g share (a, k)∗.

Recently, the topic of difference equation and difference product in the complex

plane C has attracted many mathematicians, a large number of papers have focused

on value distribution of differences and differences operator analogues of Nevanlinna

theory (see [4, 5, 6, 9, 15]) and many people paid their attention to the uniqueness of

differences and difference polynomials of meromorphic function and obtained many

interesting results. K. Liu and L.Z. Yang [12] also considered the zeros of fn(z)f(z+

c) − p(z) and fn∆cf, where p(z) is a nonzero polynomial and obtain the following

theorem. In this direction J.L. Zhang [21] considered the zeros of certain type of

difference polynomials and proved the following result for small functions.

Theorem A. Let f(z) and g(z) be two transcendental entire functions of finite

order, α(z) ( ̸≡ 0) be a small function with respect to f(z) and c be a nonzero complex

constant. If n ≥ 2 is an integer then fn(z)(f(z) − 1)f(z + c) − α(z) has infinitely

many zeros.

In the same paper, Zhang also proved the following uniqueness result.

Theorem B. Let f(z) and g(z) be two transcendental entire functions of finite

order, and α(z)(̸≡ 0) be a small function with respect to both f(z) and g(z). Suppose

that c is a nonzero complex constant and n ≥ 7 is an integer. If fn(z)(f(z)−1)f(z+

c) and gn(z)(g(z)− 1)g(z + c) share α(z) CM, then f(z) = g(z).
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In 2014, using the idea of weakly weighted sharing and relaxed weighted shar-

ing C. Meng [14] obtained the following uniqueness theorems which improve and

supplement Theorem B in different directions.

Theorem C. Let f(z) and g(z) be two transcendental entire functions of finite

order, and α(z)(̸≡ 0,∞) be a small function with respect to both f(z) and g(z).

Suppose that c is a nonzero complex constant and n ≥ 7 is an integer. If fn(z)(f(z)−
1)f(z + c) and gn(z)(g(z)− 1)g(z + c) share “(α(z), 2)”, then f(z) ≡ g(z).

Theorem D. Let f(z) and g(z) be two transcendental entire functions of finite

order, and α(z)(̸≡ 0,∞) be a small function with respect to both f(z) and g(z). Sup-

pose that c is a nonzero complex constant and n ≥ 10 is an integer. If fn(z)(f(z)−
1)f(z + c) and gn(z)(g(z)− 1)g(z + c) share (α(z), 2)∗, then f(z) ≡ g(z).

Theorem E. Let f(z) and g(z) be two transcendental entire functions of finite

order, and α(z)(̸≡ 0,∞) be a small function with respect to both f(z) and g(z).

Suppose that c is a nonzero complex constant and n ≥ 16 is an integer. If

E2)

(
α(z), fn(z)(f(z)− 1)f(z + c)

)
= E2)

(
α(z), gn(z)(g(z)− 1)g(z + c)

)
,

then f(z) ≡ g(z).

In 2015, P. Sahoo [17] studied the uniqueness problem of difference polynomials of

the form fn(z)(fm(z)− 1)f(z+ c) and proved the following results which generalize

Theorems C-E.

Theorem F. Let f(z) and g(z) be two transcendental entire functions of finite

order, and α(z)(̸≡ 0,∞) be a small function with respect to both f(z) and g(z).

Suppose that c is a nonzero complex constant, n and m(≥ 1) are integers such that

n ≥ m+6. If fn(z)(fm(z)−1)f(z+c) and gn(z)(gm(z)−1)g(z+c) share “(α(z), 2)”,

then f(z) ≡ tg(z) where tm = 1.

Theorem G. Let f(z) and g(z) be two transcendental entire functions of finite

order, and α(z)(̸≡ 0,∞) be a small function with respect to both f(z) and g(z).

Suppose that c is a nonzero complex constant, n and m(≥ 1) are integers such that

n ≥ 2m+8. If fn(z)(fm(z)−1)f(z+c) and gn(z)(gm(z)−1)g(z+c) share (α(z), 2)∗,

then f(z) ≡ tg(z) where tm = 1.

Theorem H. Let f(z) and g(z) be two transcendental entire functions of finite

order, and α(z)(̸≡ 0,∞) be a small function with respect to both f(z) and g(z).
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Suppose that c is a nonzero complex constant, n and m(≥ 1) are integers such that

n ≥ 4m+ 12. If

E2)

(
α(z), fn(z)(fm(z)− 1)f(z + c)

)
= E2)

(
α(z), gn(z)(gm(z)− 1)g(z + c)

)
,

then f(z) ≡ tg(z) where tm = 1.

Regarding Theorems F-H, one may ask the following question.

Question 1.1. What can be said about the relationship between two entire func-

tions f and g if one replace fn(z)(fm(z)−1)f(z+c) by (fn(z)(fm(z)−1)f(z+c))(k)

in Theorem F-G?

In 2018 P. Sahoo [19] answered the above question and proved the following

results which generalize Theorems F-H.

Theorem I. Let f(z) and g(z) be two transcendental entire functions of finite order,

and α(z)(̸≡ 0,∞) be a small function with respect to both f(z) and g(z). Suppose

that c is a nonzero complex constant, n, k(≥ 0) and m(≥ 1) are integers such that

n ≥ 2k +m+ 6. If (fn(z)(fm(z)− 1)f(z + c))(k) and (gn(z)(gm(z)− 1)g(z + c))(k)

share “(α(z), 2)”, then f(z) ≡ tg(z) where tm = 1.

Theorem J. Let f(z) and g(z) be two transcendental entire functions of finite order,

and α(z)(̸≡ 0,∞) be a small function with respect to both f(z) and g(z). Suppose

that c is a nonzero complex constant, n, k(≥ 0) and m(≥ 1) are integers such that

n ≥ 3k+2m+8. If (fn(z)(fm(z)− 1)f(z+ c))(k) and (gn(z)(gm(z)− 1)g(z+ c))(k)

share (α(z), 2)∗, then f(z) ≡ tg(z) where tm = 1.

Theorem K. Let f(z) and g(z) be two transcendental entire functions of finite

order, and α(z)(̸≡ 0,∞) be a small function with respect to both f(z) and g(z).

Suppose that c is a nonzero complex constant, n, k(≥ 0) and m(≥ 1) are integers

such that n ≥ 5k + 4m+ 12. If

E2)

(
α(z), (fn(z)(fm(z)− 1)f(z + c))(k)

)
=E2)

(
α(z), (gn(z)(gm(z)− 1)g(z + c))(k)

)
,

then f(z) ≡ tg(z) where tm = 1.

Regarding the results of P. Sahoo stated above it is natural to ask the following

question which is the motive of the present paper.
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Question 1.2. What can be said about the relationship between two entire func-

tions f(z) and g(z) if one replace the difference polynomial (fn(z)(fm(z)− 1)f(z+

c))(k) by (fn(z)(fm(z)−1)
s∏

j=1

f(z+ cj)
µj )(k) in Theorems I-K, where f(z) is a tran-

scendental entire function of finite order, cj(j = 1, 2, ..., s), n(≥ 1), m(≥ 1), k(≥ 0),

s and µj(j = 1, 2, ..., s) are integer?

For the sake of simplicity we also use the notation σ =

s∑
j=1

µj .

In the paper, our main concern is to find the possible answer of the above ques-

tion. We prove following theorems which extend and generalize Theorems I-K. The

following theorems are the main results of the paper.

Theorem 1.1. Let f(z) and g(z) be two transcendental entire functions of finite or-

der, cj (j = 1, 2, ..., s) be finite complex constants and α(z)(̸≡ 0) be a small function

with respect to both f(z) and g(z) with finitely many zeros. Suppose that n(≥ 1),

m(≥ 1) and k(≥ 0) are integers satisfying n ≥ max{2k +m+ σ + 5, σ + 2s+ 3}. If

(fn(z)(fm(z)− 1)
s∏

j=1

f(z + cj)
µj )(k) and (gn(z)(gm(z)− 1)

s∏
j=1

g(z + cj)
µj )(k) share

“(α, 2)”, then f(z) ≡ tg(z) for some constant t such that tn+σ = tm = 1.

Theorem 1.2. Let f(z) and g(z) be two transcendental entire functions of finite or-

der, cj (j = 1, 2, ..., s) be finite complex constants and α(z)(̸≡ 0) be a small function

with respect to both f(z) and g(z) with finitely many zeros. Suppose that n(≥ 1),

m(≥ 1) and k(≥ 0) are integers satisfying n ≥ max{3k+2m+2σ+6, σ+2s+3}. If

(fn(z)(fm(z)− 1)
s∏

j=1

f(z + cj)
µj )(k) and (gn(z)(gm(z)− 1)

s∏
j=1

g(z + cj)
µj )(k) share

(α, 2)∗, then the conclusions of theorem 1.1 hold.

Theorem 1.3. Let f(z) and g(z) be two transcendental entire functions of finite or-

der, cj (j = 1, 2, ..., s) be finite complex constants and α(z)(̸≡ 0) be a small function

with respect to both f(z) and g(z) with finitely many zeros. Suppose that n(≥ 1),

m(≥ 1) and k(≥ 0) are integers satisfying n ≥ max{5k + 4m+ 4σ + 8, σ + 2s+ 3}.

If E2)

(
α(z),

(
fn(z)(fm(z) − 1)

s∏
j=1

f(z + cj)
µj
)(k))

= E2)

(
α(z),

(
gn(z)(gm(z) −

1)

s∏
j=1

g(z + cj)
µj
)(k))

, then the conclusions of Theorem 1.1 hold.
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2. Preliminaries

Let F and G be two nonconstant meromorphic functions defined in the open

complex plane C. We denote by H the function as follows:

H =

(
F ′′

G′ −
2F ′

F − 1

)
−
(
G′′

G′ −
2G′

G− 1

)
.

Lemma 2.1 ([4]). Let f(z) be a transcendental meromorphic function of finite order,

then

T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 2.2 ([13]). Let f be a meromorphic function of finite order ρ and let c(̸= 0)

be a fixed nonzero complex constant. Then

N(r, 0; f(z + c)) ≤ N(r, 0; f) + S(r, f),

N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f),

N(r, 0; f(z + c)) ≤ N(r, 0; f) + S(r, f),

N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f),

outside of possible exceptional set with finite logarithmic measure.

Lemma 2.3 ([3]). Let f be an entire function of finite order and

F = fn(z)(fm(z)− 1)

s∏
j=1

f(z + cj)
µj .

Then

T (r, F ) = (n+m+ σ)T (r, f) + S(r, f).

Lemma 2.4 ([22]). Let f be a nonconstant meromorphic function, and p, k be two

positive integers. Then

(2.1) Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r, 0; f) + S(r, f).

and

(2.2) Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f).
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Lemma 2.5 ([2]). Let F and G be two nonconstant meromorphic functions that

share “(1, 2)” and H ̸≡ 0. Then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)

−
∞∑
p=3

N
(
r, 0;

G
′

G
|≥ p

)
+ S(r, F ) + S(r,G),

and the same inequality holds for T (r,G).

Lemma 2.6 ([2]). Let F and G be two nonconstant meromorphic functions that

share (1, 2)∗ and H ̸≡ 0. Then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)

+N(r, 0;F ) +N(r,∞;F )−m(r, 1;G)

+S(r, F ) + S(r,G),

and the same inequality holds for T (r,G).

Lemma 2.7 ([11]). Let F and G be two nonconstant entire functions, and p ≥ 2

an integer. If Ep)(1, F ) = Ep)(1, G) and H ̸≡ 0, then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) + 2N(r, 0;F ) +N(r, 0;G) + S(r, F ) + S(r,G),

and the same inequality is true for T (r,G).

Lemma 2.8 ([18]). Let f and g be two entire functions and n(≥ 1), m(≥ 1), k(≥ 0),

be integers, and let F = (fn(z)(f(z) − 1)m
s∏

j=1

f(z + cj)
µj )(k), G = (gn(z)(g(z) −

1)m
s∏

j=1

g(z+cj)
µj )(k). If there exists nonzero constants c1 and c2 such that N(r, c1;F )

= N(r; 0;G) and N(r, c2;G) = N(r, 0;F ), then n ≤ 2k +m+ σ + 2.

Lemma 2.9. Let f(z), g(z) be two transcendental entire functions of finite order

and cj(j = 1, 2, ..., s) be finite complex constants. Let m(≥ 1) and n(≥ 1) be integers

such that n ≥ σ + 2s+ 3. If

fn(z)(fm(z)− 1)
s∏

j=1

f(z + cj)
µj ≡ gn(z)(gm(z)− 1)

s∏
j=1

g(z + cj)
µj ,

then f(z) ≡ tg(z) for some constant t such that tm = tn+σ = 1.

Proof. Proof of Lemma follows from [1, Lemma 12]. �
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3. Proofs of the Main Theorems

Proof of Theorem 1.1. Let F =
Fk
1

α(z) and G =
Gk

1
α(z) where F1 = fn(z)(fm(z) −

1)
s∏

j=1

f(z + cj)
µj , G1 = gn(z)(gm(z) − 1)

s∏
j=1

g(z + cj)
µj . Then F and G are tran-

scendental meromorphic functions that share “(1, 2)” except the zeros and poles of

α(z). If possible we may assume that H ̸≡ 0. Using (2.1) and Lemma 2.3 we get

N2(r, 0;F ) ≤ N2(r, 0; (F1)
(k)) + S(r, f)

≤ T (r, (F1)
(k))− (n+m+ σ)T (r, f) +Nk+2(r, 0;F1) + S(r, f)

≤ T (r, F )− (n+m+ σ)T (r, f) +Nk+2(r, 0;F1) + S(r, f).

From this we get

(3.1) (n+m+ σ)T (r, f) ≤ T (r, F ) +Nk+2(r, 0;F1)−N2(r, 0;F ) + S(r, f).

Again by (2.2) we have

N2(r, 0;F ) ≤ N2(r, 0;F
(k)
1 ) + S(r, f)

≤ Nk+2(r, 0;F1) + S(r, f).(3.2)

Similarly

(3.3) N2(r, 0;G) ≤ Nk+2(r, 0;G1) + S(r, g).

Using (3.2), (3.3) and Lemma 2.5 we obtain from (3.1)

(n+m+ σ)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +Nk+2(r, 0;F1)

+S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + S(r, f) + S(r, g)

≤ (k +m+ σ + 2){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).(3.4)

Similarly,

(3.5) (n+m+ σ)T (r, g) ≤ (k +m+ σ + 2){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

(3.4) and (3.5) together give

(n− 2k −m− σ − 4){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

contradicting with the assumption that

n ≥ 2k +m+ σ + 5.
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Thus, we must have H ≡ 0. Then(
F ′′

F ′ −
2F ′

F − 1

)
−
(
G′′

G′ −
2G′

G− 1

)
= 0.

Integrating both sides of the above equality twice we get

(3.6)
1

F − 1
=

A

G− 1
+B,

where A(̸= 0) and B are constants. From (3.6) it is obvious that F, G share the

value 1 CM and hence they share “(1, 2)”. Therefore n ≥ 2k +m + σ + 5. We now

discuss the following three cases separately.

Case 1. Suppose that B ̸= 0 and A = B. Then from (3.6) we obtain

(3.7)
1

F − 1
=

BG

G− 1
.

If B = −1, then from (3.7) we obtain FG = 1. Then(
fn(z)(fm(z)− 1)

s∏
j=1

f(z + cj)
µj

)(k)(
gn(z)(gm(z)− 1)

s∏
j=1

g(z + cj)
µj

)(k)

= α2.

Since the number of zeros of α(z) is finite, it follows that f as well as g has finitely

many zeros. We put f(z) = h(z)eβ(z), where h(z) is a nonzero polynomial and β(z) is

a nonconstant polynomial. Now replacing
s∑

j=1

µjβ(z + cj) by γ(z) and
s∏

j=1

h(z+cj)
µj

by ν(z) we deduce that(
fn(z)(fm(z)− 1)

s∏
j=1

f(z + cj)
µj

)(k)

=

(
hn(z)enβ(z)(hm(z)emβ(z) − 1)

s∏
j=1

h(z + cj)
µjeµjβ(z+cj)

)(k)

=
(
hn(z)ν(z)enβ(z)+γ(z)(hm(z)emβ(z) − 1)

)(k)
=

(
hn+m(z)ν(z)e(n+m)β(z)+γ(z) − hn(z)ν(z)enβ(z)+γ(z)

)(k)
= e(n+m)β(z)+γ(z)P1(β(z), γ(z), h(z), ν(z), ..., β

(k)(z), γ(k)(z), h(k)(z), ν(k)(z))

−enβ(z)+γ(z)P2(β(z), γ(z), h(z), ν(z), ..., β
(k)(z), γ(k)(z), h(k)(z), ν(k)(z))

= enβ(z)+γ(z)(P1e
mβ(z) − P2).

Obviously P1e
mβ(z) − P2 has infinite number of zeros, which contradicts with the

fact that g is an entire function.
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If B ̸= −1, from (3.7), we have 1
F = BG

(1+B)G−1 and so N(r, 1
1+B ;G) = N(r, 0;F ).

Using (2.1), (2.2) and the second fundamental theorem of Nevanlinna, we deduce

that

T (r,G) ≤ N(r, 0;G) +N

(
r,

1

B + 1
;G

)
+N(r,∞;F ) + S(r,G)

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) + S(r,G)

≤ Nk+1(r, 0;F1) + T (r,G) +Nk+1(r, 0;G1)

−(n+m+ σ)T (r, g) + S(r, g).

This gives

(n+m+ σ)T (r, g) ≤ (k +m+ σ + 1){T (r, f) + T (r, g)}+ S(r, g).

Thus we obtain

(n− 2k −m− σ − 2){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which is a contradiction as n ≥ 2k +m+ σ + 5.

Case 2. Let B ̸= 0 and A ̸= B. Then from (3.6) we get F = (B+1)G−(B−A+1)
BG+(A−B)

and so N(r, B−A+1
B+1 ;G) = N(r, 0;F ). Proceeding in a manner similar to case 1 we

can arrive at a contradiction.

Case 3. Let B = 0 and A ̸= 0. Then from (3.6) we get F = G+A−1
A and

G = AF − (A− 1). If A ̸= 1, it follows that N(r, A−1
A ;F ) = N(r, 0;G) and N(r, 1−

A;G) = N(r, 0;F ). Now by Lemma 2.8, it can be shown that n ≤ 2k +m+ σ + 2,

which is a contradiction. Thus A = 1 and then F = G. Then

(fn(z)(fm(z)− 1)

s∏
j=1

f(z + cj)
µj )(k) = (gn(z)(gm(z)− 1)

s∏
j=1

g(z + cj)
µj )(k)

Integrating once we obtain

(fn(z)(fm(z)−1)
s∏

j=1

f(z + cj)
µj )(k−1)=(gn(z)(gm(z)− 1)

s∏
j=1

g(z + cj)
µj )(k−1)+ck−1

where ck−1 is a constant. If ck−1 ̸= 0, using lemma 2.8, it follows that n ≤ 2k+m+

σ + 2, a contradiction. Hence ck−1 = 0. Repeating the process k-times, we deduce

that

fn(z)(fm(z)− 1)
s∏

j=1

f(z + cj)
µj ≡ gn(z)(gm(z)− 1)

s∏
j=1

g(z + cj)
µj ,

which by Lemma 2.9 gives f(z) ≡ tg(z) for some constant t such that tm = tn+s = 1.

This completes the proof of Theorem 1.1. �
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Proof of Theorem 1.2. Let F, G, F1 and G1 be defined as in the proof of Theorem

1.1. Then F and G are transcendental meromorphic functions that share (α, 2)∗

except the zeros and poles of α(z). We assume, if possible, that H ̸≡ 0. Using (2.2)

for p = 1, (3.3) and Lemmas 2.1 and 2.6 we obtain from (3.1)

(n+m+ σ)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +N(r, 0;F )

+N(r,∞;F ) +Nk+2(r, 0;F1) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r; 0;G1) +Nk+1(r, 0;F1)

+S(r, f) + S(r, g)

≤ (2k + 2m+ 2σ + 3)T (r, f) + (k +m+ σ + 2)T (r, g)

+S(r, f) + S(r, g)(3.8)

In a similar manner we obtain

(n+m+ σ)T (r, g) ≤ (2k + 2m+ 2σ + 3)T (r, g) + (k +m+ σ + 2)T (r, f)

+S(r, f) + S(r, g).(3.9)

(3.8) and (3.9) together give

(n− 3k − 2m− 2σ − 5){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g).

contradicting with the fact that n ≥ 3k + 2m+ 2σ + 6. Thus we must have H ≡ 0.

Then the result follows from the proof of Theorem 1.1. This completes the proof of

Theorem 1.2. �

Proof of Theorem 1.3. Let F, G, F1 and G1 be defined as in the proof of Theorem

1.1. Then F and G are transcendental meromorphic functions such that E2)(1, F ) =

E2)(1, G) except the zeros and poles of α(z). We assume, if possible, that H ̸≡ 0.

Using (2.2), (3.3) and Lemmas 2.1 and 2.7 we obtain from (3.1)

(n+m+ σ)T (r, f) ≤ N2(r, 0;G) + 2N(r, 0;F ) +N(r, 0;G)

+Nk+2(r, 0;F1) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + 2Nk+1(r, 0;F1)

+Nk+1(r, 0;G1) + S(r, f) + S(r, g)

≤ (3k + 3m+ 3σ + 4)T (r, f) + (2k + 2m+ 2σ + 3)T (r, g)

+S(r, f) + S(r, g)(3.10)
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In a similar manner we obtain

(n+m+ σ)T (r, g) ≤ (3k + 3m+ 3σ + 4)T (r, g) + (2k + 2m+ 2σ + 3)T (r, f)

+S(r, f) + S(r, g).(3.11)

(3.10) and (3.11) together give

(n− 5k − 4m− 4σ − 7){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g).

contradicting with the fact that n ≥ 5k + 4m+ 4σ + 8. Thus we must have H ≡ 0.

Then the result follows from the proof of Theorem 1.1. This completes the proof of

Theorem 1.3. �
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