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TOPOLOGICAL STRUCTURES IN COMPLETE CO-RESIDUATED
LATTICES

YoUNG-HEE KiM? AND YONG CHAN Kim > *

ABSTRACT. Information systems and decision rules with imprecision and uncer-
tainty in data analysis are studied in complete residuated lattices. In this paper,
we introduce the notions of Alexandrov pretopology (precotopology) and join-meet
(meet-join) operators in complete co-residuated lattices. Moreover, their properties
and examples are investigated.

1. INTRODUCTION

Pawlak [19,20] introduced the rough set theory as a formal tool to deal with
imprecision and uncertainty in the data analysis. For an extension of Pawlak’s
rough sets, many researchers [1-12, 23,24] developed lower and upper approximation
operators. Radzikowska et al.[21, 22| investigated (I, T')-generalized fuzzy rough set
where T is a t-norm and I is an implication. J.S.Mi et al.[15] investigated (S, T)-
generalized fuzzy rough set where T is a t-norm and S(a,b) =1 —T(1 —a,1 —b) is
an implication.

Ward et al. [27] introduced a complete residuated lattice which is an algebraic
structure for many valued logic [3-5]. It is an important mathematical tool as al-
gebraic structures for many valued logics [1-12,23,24]. Using this concepts, fuzzy
rough sets, information systems and decision rules were investigated in complete
residuated lattices [1,2,7,24]. Moreover, Zheng et al. [28] introduced a complete co-
residuated lattice as the generalization of t-conorm. Junsheng et al.[10] investigated
(®, &)-generalized fuzzy rough set on (L, V, A, ®,&,0,1) where (L,V,A,&,0,1) is a
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complete residuated lattice and (L, V, A, ®,0,1) is complete co-residuated lattice in
a sense [13].

Kim et al. [8-12, 16-18] studied the properties of fuzzy join and meet complete-
ness, L-fuzzy upper and lower approximation spaces and Alexandrov L-topologies
with fuzzy partially ordered spaces and fuzzy distance spaces in complete (co-)residua-
ted lattices.

In this paper, we introduce the notions of Alexandrov pretopology (precotopol-
ogy) and join-meet (meet-join) operators in complete co-residuated lattices. More-

over, their properties and examples are investigated.

2. PRELIMINARIES

Definition 2.1 ([7, 29]). An algebra (L, A, V,®,0,1) is called a complete co-residuated
lattice if it satisfies the following conditions:

(C1) L = (L,<,V,A,0,1) is a complete lattice where 0 is the bottom element
and 1 is the top element.

(C2la=a®0,adb=bdaanda® (bdc)=(a®b) ®cforallab,ce L.

(C3) (Nierai) b= N;cr(a; ®0).

Let (L, <,®) be a complete co-residuated lattice. For each x,y € L, we define

m@yZ/\{zeL\y@zzm}.

Then (zx @ y) > ziff 2 > (z0y).

For o € L,A € LX, we denote (a © A),(a ® A),ax € L¥ as (a © A)(z) =
aS Ax), (a® A)(x) =a® A(z), ax(x) =a.
Put n(x) = 1 © x. The condition n(n(x)) = x for each x € L is called a double

negative law.

Remark 2.2. (1) An infinitely distributive lattice (L, <,V,A,® = V,0,1) is a com-
plete co-residuated lattice. In particular, the unit interval ([0, 1], <,V,A, & = V,0,1)

is a complete co-residuated lattice where
0, ify>ux,

x@y:/\{zELy\/zzaz}:{ v ify ¥z

Put n(z) =16z =1 for x # 1 and n(1) = 0. Then n(n(z)) = 0 for z # 1 and
n(n(1l)) = 1. Hence n does not satisfy a double negative law.
(2) The unit interval with a right-continuous t-conorm @, ([0, 1], <,®), is a com-

plete co-residuated lattice [26].
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(3) ([1,00],<,V,® =+, A, 1,00) is a complete co-residuated lattice where
1, ify>uz,
roy=NMeellod 2oy ={ ¥ 57
00-a=a-00=00,Ya € [l,00],00 500 = 1.
Put n(z) =
and n(n(
(4) ([0,00],<,V,® = +,A,0,00) is a complete co-residuated lattice where
yor=Nzeod|z+z>y)
=Mzel0,00] 2> —z+y} = (y—2) VO,
00 +a=a+ oo =o00,Ya € [0,00],00 500 =0.
Put n(z) = co &z = oo for  # oo and n(co) = 0. Then n(n(x)) = 0 for z # oo
and n(n(co)) = co. Hence n does not satisfy a double negative law.
(5) ([0,1], <, V,®,A,0,1) is a complete co-residuated lattice where

00 & x = oo for z # 0o and n(oco) = 1. Then n(n(z)) =1 for x # oo

00)) = oco. Hence n does not satisfy a double negative law.

x@y:(:vp—i—yp)%/\l, 1<p< oo,
1
zoy=Nze[0,1]](zF +yP)» >}
1 1
=Mzel0,1] |22 (P —yP)r} = (aP —yP)» VO,

Put n(z) = 1oz = (l—mp)% for 1 < p < co. Then n(n(x)) = x for z € [0,1]. Hence
n satisfies a double negative law.
(6) Let P(X) be the collection of all subsets of X. Then (P(X),C,U,N,& =
U, 0, X) is a complete co-residuated lattice where
AeB=N\{CeP(X)|BUC D A}
=ANB‘=A-B.
Put n(A) = X 6 A = A° for each A C X. Then n(n(A)) = A. Hence n satisfies a

double negative law.

Lemma 2.3 ([11]). Let (L,A\,V,®,5,0,1) be a complete co-residuated lattice. For
each x,y, z,x;,y; € L, we have the following properties.
D) Ify<z,z0y<zdz,yozr<zozxandzoz<zOy.
2) (Vierzi) ©y = Vier(@i ©y) and 2 & (N;jcr vi) = Vier(z © yi)-
3) Nier #:) ©y < Njer(@: © )

(2)

(3)

(4) 20 (Vier vi) < Nier(z © 9i)-

B)zozrz=0,z60=z and 06z =0. Moreover, tSy =0 iff t <y.
) yd oy >z, y>ze(zoy) and (z6y) ®(yoz) > 26 2.
(Mzoydz)=(oy)oz=(@s2) o0y
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B zoy>(zd@z)e(ydz),ycx> (262)0(z8y) and (zdy) S (2D w) <
(rez)®(yow).

9 2xdy=0iff c =0 and y = 0.

(10) (z@y)ez<zd(yoz) and (z0Yy)d2z>20 (YO 2).

(11) If L satisfies a double negative law and n(z) = 1 © x, then n(z ® y) =
n(z)ey=n(y) ©x and x Sy =n(y) ©n(z).

Definition 2.4 ([11]). Let (L,A,V,®,5,0,1) be a complete co-residuated lattice.
Let X be a set. A function dx : X x X — L is called a distance function if it satisfies
the following conditions:

(M1) dx(z,z) =0 for all z € X,

(M2) dx(z,y) ®dx(y,z) > dx(z,2), for all z,y,z € X,

(M3) If dx(z,y) = dx(y,x) =0, then z = y.

The pair (X, dx) is called a distance space.

Remark 2.5 ([11]). (1) We define a distance function dx : X x X — [0,00]. Then
(X, dx) is called a pseudo-quasi-metric space.

(2) Let (L,A\,V,®,5,0,1) be a complete co-residuated lattice. Define a function
dr, : Lx L — L as d(x,y) = z ©y. By Lemma 2.3 (5) and (6), (L,dr) is a
distance space. For 7 C L¥, we define a function d, : 7 x 7 — L as d.(A, B) =
Vaex(A(z) © B(z)). Then (7,d;) is a distance space.

3. TOPOLOGICAL STRUCTURES IN COMPLETE CO-RESIDUATED LATTICES

In this section, we assume (L, A,V,®,©,0,1) is a complete co-residuated lattice

with a double negative law n(z) =16 z.

Definition 3.1. (1) A subset 7 C LX is called an Alevandrov pretopology on X iff
it satisfies the following conditions:

(O1) ax €.

(02) If A; e Tforalliel,then \/,.; A; €.

(O3) f Ac Tand a € L, then A a €.

(2) A subset n C L¥ is called an Alexandrov precotopology on X iff it satisfies the
following conditions:

(CO1) ax €.

(CO2) If A; e npforalli € I, then \;c; A; €.

(CO3)If Aenpand € L, then a @ A € 1.
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A subset 7 C LX is called an Alezandrov topology on X iff it is both Alexandrov
pretopology and Alexandrov precotopology on X.

Definition 3.2. A map K : LX — L¥X is called a meet-join operator if it satisfies
the following conditions:
(K1) K(ax) = n(ax),
(K2) K(A) < n(A), for A e LX,
(K3) K(A®a) > K(A)©a for each o € L, A € L~ and K(B) < K(A) for A < B.
The pair (X, K) is called a meet-join space.

Definition 3.3. A map D : LX — L¥X is called a join-meet operator if it satisfies
the following conditions:
(D1) Dlax) = nlax),
(D2) n(A) < D(A), for A € LX,
(D3) a®D(A) > D(ASa) for each a € L, A € LX and D(A) > D(B) for A < B.
The pair (X, D) is called a join-meet space.

Theorem 3.4. Let M : LX — LX be a map. The following statements are equiva-
lent.

drx (M(B), M(A)) for all A,B € LX.

(A® ) for each a € L,A € LX and M(B) < M(A) for

(AS ) for each o € L,A € LX and M(B) < M(A) for

Proof. (1) = (2). If A < B, then d;x(A,B) = 0 and d;x(M(B), M(A)) = 0.
Thus M(B) < M(A). Since o > dyx(a @A, A) > dpx (M(A), M(a@ A)), we have
M(a® A) > M(A) © a.

(2)=(1). Let @« = dyx (A, B). Since B&dyx(A,B) > A, M(A) > M(d;x (A, B)®
B) > M(B)©dpx (A, B). Then d;x (A, B) > d;x (M(B), M(A)).

(1) = (3). If A < B, then M(B) < M(A). Since a > d;x(A,A© a) >
drx(M(As a), M(A)), we have M(A & a) < M(A) & a.

(3)= (1). Let @« = dyx (A, B). Then d;x(A, B) > d;x(M(B), M(A)) from:

M(B) € M(ASdyx(A,B)) < M(A) @ dyx (A, B).
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Theorem 3.5. Let (X,n) be an Alexandrov precotopological space. Define D,
LX - LX by
Dy(A) = ) (dpx(n(A), B) @ B).
Ben
Then the following properties hold.

(1) Dy(4) = AuerdAs [ n(4) < As, 4; € 7,
(2) Dy, is a join-meet operator on X such that Dy(n(D,(A))) = Dy,(A).

(3) dpx(Dy(A), Dy(C)) < dpx(C, A).

(4) np, =n where np, = {A € L* | A =Dy(n(A))}.

(5) If D is a join-meet operator on X, then D,, > D. Moreover, the equality
holds if D(n(D(A))) = D(A) for each A € LX.

Proof. (1) Put D1(A) = \;cr{A:i | n(A) < A, A; € ). Since
Dy(A) = \ (dpx(n(A),C) & C) €
Cen
and
N (dix (n(4), 4) @ A;) = n(A), Dy(A) = Di(A).
A;€n
Since D1(A) € n, Dy(A) < dpx(n(A),Di1(A))®D1(A) = D1(A). Hence D,, = D;.
(2) (D1) For all z € X, since n(ax) =n(a)x € n,
— N\ dix(nl(ax),C) & C(a)

Cen
< dpx(n(ax), n(ax)) & n(ax)(z) = nlax)(z).

(D2) For each A € LX, d;x(n(A), B) ® B > n(A). Hence D, (A) > n(A).
(D3) If A < B, then D,(A) > D,(B).
For each A, B € LX, we have

a®Dy(A) =a®d \{Ai|n(A) < A, A € n}

el
= N\{e® 4 | n(A) < A;, A; € n}
el
> /\{a@A,; la®dn(A)=n(Aca)<ad® A;,ad A; €n}
el
>Dy(AS ).

Since D, (A) € 1,

D,(n(Dy(4) = \ (dyx(Dy(4).0) & C)
Ce
< dyx (Dy(4), Dy(4)) & D, (4) = D, (A).
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(3) For each A,C € LX, we have
dpx (Dy(A),Dy(C)) = \/ (Dy(A)(x) © Dy(C) ()

zeX

=\ (A ex(n(4), B) @ B(x)) & |\ (dpx (n(C), B) & E(x)))
zeX Ben FEen
<\VV (de £)® B(2)) & (dyx (n(0), E) & B(x)))
rzeX Een

<V (dpx(1(4), B) © dyx (n(C), E))
zeX

< dyx (n(A),n(C)) = dyx (C, A).
(4) b, = 1 where np, = {A € LX | A =D,(n(4))}.

Aecn, A=Dy(n(A)),Ac nD,
Aenp,, A=Dy(n(Ad) en Acn.

(5) For each A € LX,

A) = /\{A,» | n(A) < Ai, A € np}
zEF

= A\ {D(n( (A) < Ai, As e np} > D(A)
el
(A > n(4;) = D(4) < D(n(4))).

If D(n(D(A))) = D(A) for each A € LX,
Dyp(A)(z) = N (dpx(4,0) @ C(x))

cenp
< dyx (4, D(A)) & D(A)(x) = D(A)(x).

0

Theorem 3.6. Let (X, 7) be an Alexandrov pretopological space. Define K, : L* —
LX by
K (A) = \/ (Bi ©dpx(Bi,n(A)))
B;eT

Then the following properties hold.

(1) K (A) = V{Bi € 7| Bi < n(A)}.
(2) Kr is a meet-join operator on X such that K (n(IC;(A))) = K-(A).
(3) drx (K+(A),K+(C)) < dpx(C, A).
(4) For each A,C € LX, 1ic, = 7 where 1. = {A € LX | A= K.(n(A))}.
(5) If K is a meet-join operator on X, then K. < K. Moreover, the equality
holds if K(n(KC(A))) = K(A) for each A € LX.
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Proof. (1) Since 7 is an Alexandrov pretopology on X, \/ ¢, (C©dpx(C,n(A)) € 7.
Put K1(A) = V;er{Ai | Ai <n(A),A; € 7} Since A; < n(A) @ dpx(A;,n(A)) iff
A;odpx(Ai,n(A)) <n(A), by A; &drx(Ai,n(A)) € 7, K1(A) > K, (A).
Since Kl(A) erT, /CT(A) > Kl(A) © de(Kl(A),n(A)) = Kl(A) 60= Kl(A)
(2) (K1) For each x € X,

Krlax)(@) =\ (Bedpx(Bn(ax))
BeLX
> n(ax) & dpx (n(ax), n(ax)) = n(ax)(@),
(K2) Tt follows A; & dyx (A5, n(A)) < n(A).
(K3) For each A,C € LX,

K-(A)oa=\/[{Bier|Bi<nA)}oa
=\/{Bioaecr|B <n(A)}
<\/{Bicaer|Bioa<n(d)oa=nAda)}
<K (A® ).

Since K (A) € 7, K+ (A) = K- (n(K(A))) from:
Kr(n(K7(A))) 2 K+(A) © dpx (K7 (A), Kr(A)) = K- (A).
(3) For each A,C € LX,

dpx (K (A),KC)) =\ (Kr(4)(@) © K,(C) () )

zeX
=V (V B@edxB,na) e \/ (D) & dpx (D,n(C))))
rzeX Ber Der
<\ V ((B@) o dpx(B,n(4))

S((B(x) & dpx(B,n(C)))) (by Lemma 2.3(8))

< A\ (dpx(B,n(C)) © dpx (B,n(A))) (put B =n(A))
Ber
<dpx(n(A),n(C)) =d;x(C,A) (by Lemma 2.3(11)).

(4) It is similarly proved as Theorem 3.5(4).

()

K (4) = \/{Bi € 7 | Bi < n(A)}
= \/{K((B) € 7 | n(B) > A, K(n(By)) < K(A)} < K(A).
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If C(n(K(A))) = K(A) for each A € LX, then K(A) € 7. Thus

Koc(A)(x) = \/ (B(x) © dpx(B,n(A)))
BeTk

> K(A)(z) © dx (K(A),n(A)) = K(A)(z).
O

Example 3.7. Let X = {z,y,z} and ([0,1],<,V,A,®,5,0,1) be a complete co-

residuated lattice defined as n(z) =1 — z,
r@dy=(x+yAl, zoy=(zx—y)VO0.
Put A € [0,1)% with A(z) = 0.6, A(y) = 0.3, A(2) = 0.5.
(1) Define an Alexandrov pretopology
x ={(Aca)Vpx)|apeLl}

By Theorem 3.6(4), 7xc,, = 7 where 7c, = {A € [0, X | A=K, (n(A))}. Since

0.20A = (0.8,0.5,0.7) & 7x = 7ic, .

For B = (0.2,0.4,0.3) € [0,1]%, K, (B) = V{A; € 7x | A; <n(B)} = 0.6x.
(2) Define an Alexandrov precotopology

TX = TK,, isnot an Alexandrov precotopology.

nx ={(A®a)ABx)|a,B €L}

By Theorem 3.5(4), np,, = n where np, = = {4 € [0, 11X | A= D, (n(A))}. Since
A50.2=(04,0.1,0.3) € nx = ND,,» X = 1D, 1s not an Alexandrov pretopology.
For B = (0.2,0.4,0.3) € [0,1]%,

Dy (B) = \{Ai € nx | n(B) < A;} = (0.9,0.6,0.8) A 0.8x = (0.8,0.6,0.8).
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