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TOPOLOGICAL STRUCTURES IN COMPLETE CO-RESIDUATED

LATTICES

Young-Hee Kim a and Yong Chan Kim b, ∗

Abstract. Information systems and decision rules with imprecision and uncer-
tainty in data analysis are studied in complete residuated lattices. In this paper,
we introduce the notions of Alexandrov pretopology (precotopology) and join-meet
(meet-join) operators in complete co-residuated lattices. Moreover, their properties
and examples are investigated.

1. Introduction

Pawlak [19, 20] introduced the rough set theory as a formal tool to deal with

imprecision and uncertainty in the data analysis. For an extension of Pawlak’s

rough sets, many researchers [1-12, 23,24] developed lower and upper approximation

operators. Radzikowska et al.[21, 22] investigated (I, T )-generalized fuzzy rough set

where T is a t-norm and I is an implication. J.S.Mi et al.[15] investigated (S, T )-

generalized fuzzy rough set where T is a t-norm and S(a, b) = 1− T (1− a, 1− b) is

an implication.

Ward et al. [27] introduced a complete residuated lattice which is an algebraic

structure for many valued logic [3-5]. It is an important mathematical tool as al-

gebraic structures for many valued logics [1-12,23,24]. Using this concepts, fuzzy

rough sets, information systems and decision rules were investigated in complete

residuated lattices [1, 2, 7, 24]. Moreover, Zheng et al. [28] introduced a complete co-

residuated lattice as the generalization of t-conorm. Junsheng et al.[10] investigated

(⊙,&)-generalized fuzzy rough set on (L,∨,∧,⊙,&, 0, 1) where (L,∨,∧,&, 0, 1) is a
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complete residuated lattice and (L,∨,∧,⊙, 0, 1) is complete co-residuated lattice in

a sense [13].

Kim et al. [8-12, 16-18] studied the properties of fuzzy join and meet complete-

ness, L-fuzzy upper and lower approximation spaces and Alexandrov L-topologies

with fuzzy partially ordered spaces and fuzzy distance spaces in complete(co-)residua-

ted lattices.

In this paper, we introduce the notions of Alexandrov pretopology (precotopol-

ogy) and join-meet (meet-join) operators in complete co-residuated lattices. More-

over, their properties and examples are investigated.

2. Preliminaries

Definition 2.1 ([7, 29]). An algebra (L,∧,∨,⊕, 0, 1) is called a complete co-residuated

lattice if it satisfies the following conditions:

(C1) L = (L,≤,∨,∧, 0, 1) is a complete lattice where 0 is the bottom element

and 1 is the top element.

(C2) a = a⊕ 0, a⊕ b = b⊕ a and a⊕ (b⊕ c) = (a⊕ b)⊕ c for all a, b, c ∈ L.

(C3) (
∧

i∈Γ ai)⊕ b =
∧

i∈Γ(ai ⊕ b).

Let (L,≤,⊕) be a complete co-residuated lattice. For each x, y ∈ L, we define

x⊖ y =
∧

{z ∈ L | y ⊕ z ≥ x}.

Then (x⊕ y) ≥ z iff x ≥ (z ⊖ y).

For α ∈ L,A ∈ LX , we denote (α ⊖ A), (α ⊕ A), αX ∈ LX as (α ⊖ A)(x) =

α⊖A(x), (α⊕A)(x) = α⊕A(x), αX(x) = α.

Put n(x) = 1 ⊖ x. The condition n(n(x)) = x for each x ∈ L is called a double

negative law.

Remark 2.2. (1) An infinitely distributive lattice (L,≤,∨,∧,⊕ = ∨, 0, 1) is a com-

plete co-residuated lattice. In particular, the unit interval ([0, 1],≤,∨,∧,⊕ = ∨, 0, 1)
is a complete co-residuated lattice where

x⊖ y =
∧
{z ∈ L | y ∨ z ≥ x} =

{
0, if y ≥ x,
x, if y ̸≥ x.

Put n(x) = 1 ⊖ x = 1 for x ̸= 1 and n(1) = 0. Then n(n(x)) = 0 for x ̸= 1 and

n(n(1)) = 1. Hence n does not satisfy a double negative law.

(2) The unit interval with a right-continuous t-conorm ⊕, ([0, 1],≤,⊕), is a com-

plete co-residuated lattice [26].
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(3) ([1,∞],≤,∨,⊕ = ·,∧, 1,∞) is a complete co-residuated lattice where

x⊖ y =
∧
{z ∈ [1,∞] | yz ≥ x} =

{
1, if y ≥ x,
x
y , if y ̸≥ x.

∞ · a = a · ∞ = ∞, ∀a ∈ [1,∞],∞⊖∞ = 1.

Put n(x) = ∞ ⊖ x = ∞ for x ̸= ∞ and n(∞) = 1. Then n(n(x)) = 1 for x ̸= ∞
and n(n(∞)) = ∞. Hence n does not satisfy a double negative law.

(4) ([0,∞],≤,∨,⊕ = +,∧, 0,∞) is a complete co-residuated lattice where

y ⊖ x =
∧
{z ∈ [0,∞] | x+ z ≥ y}

=
∧
{z ∈ [0,∞] | z ≥ −x+ y} = (y − x) ∨ 0,

∞+ a = a+∞ = ∞, ∀a ∈ [0,∞],∞⊖∞ = 0.

Put n(x) = ∞ ⊖ x = ∞ for x ̸= ∞ and n(∞) = 0. Then n(n(x)) = 0 for x ̸= ∞
and n(n(∞)) = ∞. Hence n does not satisfy a double negative law.

(5) ([0, 1],≤,∨,⊕,∧, 0, 1) is a complete co-residuated lattice where

x⊕ y = (xp + yp)
1
p ∧ 1, 1 ≤ p < ∞,

x⊖ y =
∧
{z ∈ [0, 1] | (zp + yp)

1
p ≥ x}

=
∧
{z ∈ [0, 1] | z ≥ (xp − yp)

1
p } = (xp − yp)

1
p ∨ 0,

Put n(x) = 1⊖x = (1−xp)
1
p for 1 ≤ p < ∞. Then n(n(x)) = x for x ∈ [0, 1]. Hence

n satisfies a double negative law.

(6) Let P (X) be the collection of all subsets of X. Then (P (X),⊂,∪,∩,⊕ =

∪, ∅, X) is a complete co-residuated lattice where

A⊖B =
∧
{C ∈ P (X) | B ∪ C ⊃ A}

= A ∩Bc = A−B.

Put n(A) = X ⊖ A = Ac for each A ⊂ X. Then n(n(A)) = A. Hence n satisfies a

double negative law.

Lemma 2.3 ([11]). Let (L,∧,∨,⊕,⊖, 0, 1) be a complete co-residuated lattice. For

each x, y, z, xi, yi ∈ L, we have the following properties.

(1) If y ≤ z, x⊕ y ≤ x⊕ z, y ⊖ x ≤ z ⊖ x and x⊖ z ≤ x⊖ y.

(2) (
∨

i∈Γ xi)⊖ y =
∨

i∈Γ(xi ⊖ y) and x⊖ (
∧

i∈Γ yi) =
∨

i∈Γ(x⊖ yi).

(3) (
∧

i∈Γ xi)⊖ y ≤
∧

i∈Γ(xi ⊖ y)

(4) x⊖ (
∨

i∈Γ yi) ≤
∧

i∈Γ(x⊖ yi).

(5) x⊖ x = 0, x⊖ 0 = x and 0⊖ x = 0. Moreover, x⊖ y = 0 iff x ≤ y.

(6) y ⊕ (x⊖ y) ≥ x, y ≥ x⊖ (x⊖ y) and (x⊖ y)⊕ (y ⊖ z) ≥ x⊖ z.

(7) x⊖ (y ⊕ z) = (x⊖ y)⊖ z = (x⊖ z)⊖ y.
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(8) x⊖ y ≥ (x⊕ z)⊖ (y ⊕ z), y ⊖ x ≥ (z ⊖ x)⊖ (z ⊖ y) and (x⊕ y)⊖ (z ⊕ w) ≤
(x⊖ z)⊕ (y ⊖ w).

(9) x⊕ y = 0 iff x = 0 and y = 0.

(10) (x⊕ y)⊖ z ≤ x⊕ (y ⊖ z) and (x⊖ y)⊕ z ≥ x⊖ (y ⊖ z).

(11) If L satisfies a double negative law and n(x) = 1 ⊖ x, then n(x ⊕ y) =

n(x)⊖ y = n(y)⊖ x and x⊖ y = n(y)⊖ n(x).

Definition 2.4 ([11]). Let (L,∧,∨,⊕,⊖, 0, 1) be a complete co-residuated lattice.

Let X be a set. A function dX : X×X → L is called a distance function if it satisfies

the following conditions:

(M1) dX(x, x) = 0 for all x ∈ X,

(M2) dX(x, y)⊕ dX(y, z) ≥ dX(x, z), for all x, y, z ∈ X,

(M3) If dX(x, y) = dX(y, x) = 0, then x = y.

The pair (X, dX) is called a distance space.

Remark 2.5 ([11]). (1) We define a distance function dX : X ×X → [0,∞]. Then

(X, dX) is called a pseudo-quasi-metric space.

(2) Let (L,∧,∨,⊕,⊖, 0, 1) be a complete co-residuated lattice. Define a function

dL : L × L → L as dL(x, y) = x ⊖ y. By Lemma 2.3 (5) and (6), (L, dL) is a

distance space. For τ ⊂ LX , we define a function dτ : τ × τ → L as dτ (A,B) =∨
x∈X(A(x)⊖B(x)). Then (τ, dτ ) is a distance space.

3. Topological Structures in Complete Co-residuated Lattices

In this section, we assume (L,∧,∨,⊕,⊖, 0, 1) is a complete co-residuated lattice

with a double negative law n(x) = 1⊖ x.

Definition 3.1. (1) A subset τ ⊂ LX is called an Alexandrov pretopology on X iff

it satisfies the following conditions:

(O1) αX ∈ τ .

(O2) If Ai ∈ τ for all i ∈ I, then
∨

i∈I Ai ∈ τ .

(O3) If A ∈ τ and α ∈ L, then A⊖ α ∈ τ .

(2) A subset η ⊂ LX is called an Alexandrov precotopology on X iff it satisfies the

following conditions:

(CO1) αX ∈ η.

(CO2) If Ai ∈ η for all i ∈ I, then
∧

i∈I Ai ∈ η.

(CO3) If A ∈ η and α ∈ L, then α⊕A ∈ η.
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A subset τ ⊂ LX is called an Alexandrov topology on X iff it is both Alexandrov

pretopology and Alexandrov precotopology on X.

Definition 3.2. A map K : LX → LX is called a meet-join operator if it satisfies

the following conditions:

(K1) K(αX) = n(αX),

(K2) K(A) ≤ n(A), for A ∈ LX ,

(K3) K(A⊕α) ≥ K(A)⊖α for each α ∈ L,A ∈ LX and K(B) ≤ K(A) for A ≤ B.

The pair (X,K) is called a meet-join space.

Definition 3.3. A map D : LX → LX is called a join-meet operator if it satisfies

the following conditions:

(D1) D(αX) = n(αX),

(D2) n(A) ≤ D(A), for A ∈ LX ,

(D3) α⊕D(A) ≥ D(A⊖α) for each α ∈ L,A ∈ LX and D(A) ≥ D(B) for A ≤ B.

The pair (X,D) is called a join-meet space.

Theorem 3.4. Let M : LX → LX be a map. The following statements are equiva-

lent.

(1) dLX (A,B) ≥ dLX (M(B),M(A)) for all A,B ∈ LX .

(2) M(A) ⊖ α ≤ M(A ⊕ α) for each α ∈ L,A ∈ LX and M(B) ≤ M(A) for

A ≤ B.

(3) α ⊕ M(A) ≥ M(A ⊖ α) for each α ∈ L,A ∈ LX and M(B) ≤ M(A) for

A ≤ B.

Proof. (1) ⇒ (2). If A ≤ B, then dLX (A,B) = 0 and dLX (M(B),M(A)) = 0.

Thus M(B) ≤ M(A). Since α ≥ dLX (α⊕A,A) ≥ dLX (M(A),M(α⊕A)), we have

M(α⊕A) ≥ M(A)⊖ α.

(2)⇒ (1). Let α = dLX (A,B). SinceB⊕dLX (A,B) ≥ A,M(A) ≥ M(dLX (A,B)⊕
B) ≥ M(B)⊖ dLX (A,B). Then dLX (A,B) ≥ dLX (M(B),M(A)).

(1) ⇒ (3). If A ≤ B, then M(B) ≤ M(A). Since α ≥ dLX (A,A ⊖ α) ≥
dLX (M(A⊖ α),M(A)), we have M(A⊖ α) ≤ M(A)⊕ α.

(3)⇒ (1). Let α = dLX (A,B). Then dLX (A,B) ≥ dLX (M(B),M(A)) from:

M(B) ≤ M(A⊖ dLX (A,B)) ≤ M(A)⊕ dLX (A,B).

�
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Theorem 3.5. Let (X, η) be an Alexandrov precotopological space. Define Dη :

LX → LX by

Dη(A) =
∧
B∈η

(dLX (n(A), B)⊕B).

Then the following properties hold.

(1) Dη(A) =
∧

i∈Γ{Ai | n(A) ≤ Ai, Ai ∈ η}.
(2) Dη is a join-meet operator on X such that Dη(n(Dη(A))) = Dη(A).

(3) dLX (Dη(A),Dη(C)) ≤ dLX (C,A).

(4) ηDη = η where ηDη = {A ∈ LX | A = Dη(n(A))}.
(5) If D is a join-meet operator on X, then DηD ≥ D. Moreover, the equality

holds if D(n(D(A))) = D(A) for each A ∈ LX .

Proof. (1) Put D1(A) =
∧

i∈Γ{Ai | n(A) ≤ Ai, Ai ∈ η}. Since

Dη(A) =
∧
C∈η

(dLX (n(A), C)⊕ C) ∈ η

and ∧
Ai∈η

(dLX (n(A), Ai)⊕Ai) ≥ n(A),Dη(A) ≥ D1(A).

Since D1(A) ∈ η, Dη(A) ≤ dLX (n(A), D1(A))⊕D1(A) = D1(A). Hence Dη = D1.

(2) (D1) For all x ∈ X, since n(αX) = n(α)X ∈ η,

Dη(αX)(x) =
∧
C∈η

dLX (n(αX), C)⊕ C(x)

≤ dLX (n(αX), n(αX))⊕ n(αX)(x) = n(αX)(x).

(D2) For each A ∈ LX , dLX (n(A), B)⊕B ≥ n(A). Hence Dη(A) ≥ n(A).

(D3) If A ≤ B, then Dη(A) ≥ Dη(B).

For each A,B ∈ LX , we have

α⊕Dη(A) = α⊕
∧
i∈Γ

{Ai | n(A) ≤ Ai, Ai ∈ η}

=
∧
i∈Γ

{α⊕Ai | n(A) ≤ Ai, Ai ∈ η}

≥
∧
i∈Γ

{α⊕Ai | α⊕ n(A) = n(A⊖ α) ≤ α⊕Ai, α⊕Ai ∈ η}

≥ Dη(A⊖ α).

Since Dη(A) ∈ η,

Dη(n(Dη(A))) =
∧
C∈η

(dLX (Dη(A), C)⊕ C)

≤ dLX (Dη(A),Dη(A))⊕Dη(A) = Dη(A).
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(3) For each A,C ∈ LX , we have

dLX (Dη(A),Dη(C)) =
∨
x∈X

(Dη(A)(x)⊖Dη(C)(x))

=
∨
x∈X

( ∧
B∈η

(dLX (n(A), B)⊕B(x))⊖
∧
E∈η

(dLX (n(C), E)⊕ E(x))
)

≤
∨
x∈X

∨
E∈η

(
dLX (n(A), E)⊕ E(x))⊖ (dLX (n(C), E)⊕ E(x))

)
≤

∨
x∈X

(
dLX (n(A), E)⊖ dLX (n(C), E))

≤ dLX (n(A), n(C)) = dLX (C,A).

(4) ηDη = η where ηDη = {A ∈ LX | A = Dη(n(A))}.

A ∈ η, A = Dη(n(A)), A ∈ ηDη

A ∈ ηDη , A = Dη(n(A)) ∈ η,A ∈ η.

(5) For each A ∈ LX ,

DηD(A) =
∧
i∈Γ

{Ai | n(A) ≤ Ai, Ai ∈ ηD}

=
∧
i∈Γ

{D(n(Ai)) | n(A) ≤ Ai, Ai ∈ ηD} ≥ D(A)

(A ≥ n(Ai) ⇒ D(A) ≤ D(n(Ai))).

If D(n(D(A))) = D(A) for each A ∈ LX ,

DηD(A)(x) =
∧

C∈ηD

(dLX (A,C)⊕ C(x))

≤ dLX (A,D(A))⊕D(A)(x) = D(A)(x).

�

Theorem 3.6. Let (X, τ) be an Alexandrov pretopological space. Define Kτ : LX →
LX by

Kτ (A) =
∨
Bi∈τ

(Bi ⊖ dLX (Bi, n(A)))

Then the following properties hold.

(1) Kτ (A) =
∨
{Bi ∈ τ | Bi ≤ n(A)}.

(2) Kτ is a meet-join operator on X such that Kτ (n(Kτ (A))) = Kτ (A).

(3) dLX (Kτ (A),Kτ (C)) ≤ dLX (C,A).

(4) For each A,C ∈ LX , τKτ = τ where τKτ = {A ∈ LX | A = Kτ (n(A))}.
(5) If K is a meet-join operator on X, then KτK ≤ K. Moreover, the equality

holds if K(n(K(A))) = K(A) for each A ∈ LX .
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Proof. (1) Since τ is an Alexandrov pretopology on X,
∨

C∈τ (C⊖dLX (C, n(A)) ∈ τ .

Put K1(A) =
∨

i∈Γ{Ai | Ai ≤ n(A), Ai ∈ τ}. Since Ai ≤ n(A) ⊕ dLX (Ai, n(A)) iff

Ai ⊖ dLX (Ai, n(A)) ≤ n(A), by Ai ⊖ dLX (Ai, n(A)) ∈ τ , K1(A) ≥ Kτ (A).

Since K1(A) ∈ τ , Kτ (A) ≥ K1(A)⊖ dLX (K1(A), n(A)) = K1(A)⊖ 0 = K1(A).

(2) (K1) For each x ∈ X,

Kτ (αX)(x) =
∨

B∈LX

(
B ⊖ dLX (B,n(αX))

)
≥ n(αX)⊖ dLX (n(αX), n(αX)) = n(αX)(x),

(K2) It follows Ai ⊖ dLX (Ai, n(A)) ≤ n(A).

(K3) For each A,C ∈ LX ,

Kτ (A)⊖ α =
∨

{Bi ∈ τ | Bi ≤ n(A)} ⊖ α

=
∨

{Bi ⊖ α ∈ τ | Bi ≤ n(A)}
≤

∨
{Bi ⊖ α ∈ τ | Bi ⊖ α ≤ n(A)⊖ α = n(A⊕ α)}

≤ Kτ (A⊕ α).

Since Kτ (A) ∈ τ , Kτ (A) = Kτ (n(Kτ (A))) from:

Kτ (n(Kτ (A))) ≥ Kτ (A)⊖ dLX (Kτ (A),Kτ (A)) = Kτ (A).

(3) For each A,C ∈ LX ,

dLX (Kτ (A),Kτ (C)) =
∨
x∈X

(
Kτ (A)(x)⊖Kτ (C)(x)

)
=

∨
x∈X

( ∨
B∈τ

(B(x)⊖ dLX (B,n(A)))⊖
∨
D∈τ

(D(x)⊖ dLX (D,n(C)))
)

≤
∨
x∈X

∨
B∈τ

(
(B(x)⊖ dLX (B,n(A))))

⊖((B(x)⊖ dLX (B,n(C)))
)

(by Lemma 2.3(8))

≤
∧
B∈τ

(dLX (B,n(C))⊖ dLX (B,n(A))) (put B = n(A))

≤ dLX (n(A), n(C)) = dLX (C,A) (by Lemma 2.3(11)).

(4) It is similarly proved as Theorem 3.5(4).

(5)

KτK(A) =
∨

{Bi ∈ τK | Bi ≤ n(A)}
=

∨
{K(n(Bi)) ∈ τK | n(Bi) ≥ A,K(n(Bi)) ≤ K(A)} ≤ K(A).
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If K(n(K(A))) = K(A) for each A ∈ LX , then K(A) ∈ τK. Thus

KτK(A)(x) =
∨

B∈τK

(B(x)⊖ dLX (B,n(A)))

≥ K(A)(x)⊖ dLX (K(A), n(A)) = K(A)(x).

�

Example 3.7. Let X = {x, y, z} and ([0, 1],≤,∨,∧,⊕,⊖, 0, 1) be a complete co-

residuated lattice defined as n(x) = 1− x,

x⊕ y = (x+ y) ∧ 1, x⊖ y = (x− y) ∨ 0.

Put A ∈ [0, 1]X with A(x) = 0.6, A(y) = 0.3, A(z) = 0.5.

(1) Define an Alexandrov pretopology

τX = {(A⊖ α) ∨ βX) | α, β ∈ L}.

By Theorem 3.6(4), τKτX
= τ where τKτX

= {A ∈ [0, 1]X | A = KτX (n(A))}. Since

0.2⊕A = (0.8, 0.5, 0.7) ̸∈ τX = τKτX
, τX = τKτX

is not an Alexandrov precotopology.

For B = (0.2, 0.4, 0.3) ∈ [0, 1]X , KτX (B) =
∨
{Ai ∈ τX | Ai ≤ n(B)} = 0.6X .

(2) Define an Alexandrov precotopology

ηX = {(A⊕ α) ∧ βX) | α, β ∈ L}.

By Theorem 3.5(4), ηDηX
= η where ηDηX

= {A ∈ [0, 1]X | A = DτX (n(A))}. Since

A⊖ 0.2 = (0.4, 0.1, 0.3) ̸∈ ηX = ηDηX
, ηX = ηDηX

is not an Alexandrov pretopology.

For B = (0.2, 0.4, 0.3) ∈ [0, 1]X ,

DηX (B) =
∧

{Ai ∈ ηX | n(B) ≤ Ai} = (0.9, 0.6, 0.8) ∧ 0.8X = (0.8, 0.6, 0.8).
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