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FACTORIAL NODAL COMPLETE INTERSECTION 3-FOLDS
IN P5

Kyusik Hong

Abstract. Let X be a nodal complete intersection 3-fold defined by a hypersurface
in P5 of degree n and a smooth quadratic hypersurface in P5. Then we show that
X is factorial if it has at most n2 − n + 1 nodes and contains no 2-planes, where
n = 3, 4.

1. Introduction

All varieties are assumed to be projective, normal and defined over C. A variety
is called nodal if all its singular points are only ordinary double points, i.e., nodes.
Also, a variety is called factorial if every Weil divisor on it is Cartier. From now
on, we shall denote by NCIT(n,m) a nodal complete intersection threefold of two
hypersurfaces Gn and Gm in P5 of degree n and m, n ≥ m, respectively, such that
Gm is smooth. In the present article, we study the factoriality of NCIT(n,m).

The factoriality depends both on local types of singularities and on their global
position. Note that a smooth threefold is factorial. Cheltsov [2] obtained a sharp
bound on the number of nodes on a factorial nodal hypersurface in P4.

Theorem 1. If #|Sing(NCIT(n, 1))| < (n− 1)2, then NCIT(n, 1) is factorial.

For m ≥ 2, Kosta [9] proved the following result.

Theorem 2. If #|Sing(NCIT(n,m))| < (n + m − 2)2 − (n + m − 2)(m − 1), then
NCIT(n,m) is factorial.

Thereafter, Cynk and Rams [5], Kloosterman [8] consider the case of a nodal
complete intersection in projective space of dimension ≥ 5. Let N be a nodal
complete intersection threefold in P3+c defined by homogeneous equations f1, . . . , fc

Received by the editors April 12, 2022. Accepted April 26, 2022.
2010 Mathematics Subject Classification. 14C20, 14J17, 14J30.
Key words and phrases. complete intersection 3-fold, nodal variety, factoriality.

c© 2022 Korean Soc. Math. Educ.

201



202 Kyusik Hong

of multidegree d1, . . . , dc with d1 ≤ · · · ≤ dc. Suppose that the set V (f1, . . . , fi) is
smooth in codimension 3 for i ≤ c− 1. Cynk and Rams [5] gave a sharp bound on
the minimal number of nodes of N which contains a smooth complete intersection
surface that is not a Cartier divisor. On the other hand, Kloosterman [8] gave a
sharp bound on the minimal number of nodes of N which has a slightly different
non-degeneracy condition than Cynk and Rams, and assume that either c = 2 or
d1 + . . . + dc−1 < dc.

The aim of this article is to give some examples of a factorial NCIT(n,m) which
has many singular points greater than the bound of Kosta [9]. Two papers [1, 9],
Example 7, Lemma 8 enable us to propose the conjecture below.

Conjecture 3. NCIT(n,m) is factorial if it has at most (n+m−2)2−(n−1)(m−1)
nodes and contains no planes.

Remark 4. Because, for m = 1, a complete proof of Conjecture 3 was given in the
paper [3], we may assume that m ≥ 2.

Our main result is the following:

Theorem 5. Conjecture 3 holds for NCIT(3, 2) and NCIT(4, 2).

2. Preliminaries

To check the factoriality of NCIT(n,m), we use the following theorem.

Theorem 6. NCIT(n,m) is factorial if the points of Sing(NCIT(n, m)) impose in-
dependent linear conditions on sections in H0(OP5(2n + m− 6)|Gm).

Proof. See [4, Theorem 2] and [1, Corollary 14]. ¤

Now, we present a non-factorial NCIT(n,m), which motivates our study.

Example 7 ([9, Example 1.2]). Let X be a complete intersection of two smooth
hypersurfaces{

Gn := xf(x, y, z, w, s, t) + yg(x, y, z, w, s, t) + zh(x, y, z, w, s, t) = 0,

Gm := xf̃(x, y, z, w, s, t) + yg̃(x, y, z, w, s, t) + zh̃(x, y, z, w, s, t) = 0,

in P5 ∼= Proj
(
C[x, y, z, w, s, t]

)
of degree n and m, n ≥ m, respectively. Then X has

exactly (n + m − 2)2 − (n − 1)(m − 1) nodes and contains the plane π defined by
{x = y = z = 0}. In this case, X is not factorial and the set Sing(X) lies on the
plane π.
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From the above example, if a plane is contained in NCIT(n,m), then NCIT(n,m)
is not factorial. More precisely, we have the following result.

Lemma 8. If NCIT(n,m) contains a plane, then NCIT(n,m) has at least (n+m−
2)2 − (n− 1)(m− 1) nodes and is not factorial.

Proof. Assume that a plane π is given by {x = y = z = 0} such that π ⊂
NCIT(n,m) ⊂ P5 ∼= Proj(C[x, y, z, w, s, t]). Then NCIT(n,m) can be written as
a complete intersection of two hypersurfaces

{
Gn := xf(x, y, z, w, s, t) + yg(x, y, z, w, s, t) + zh(x, y, z, w, s, t) = 0,

Gm := xf̃(x, y, z, w, s, t) + yg̃(x, y, z, w, s, t) + zh̃(x, y, z, w, s, t) = 0

of degree n and m, n ≥ m, respectively, where Gm is smooth. Because NCIT(n,m)
has only ordinary double points as singularities, the set Sing(NCIT(n,m)) is con-
tained in the set given by the system of five equations

{x = y = z = fg̃ − gf̃ = fh̃− hf̃ = 0},
for q ∈ Sing(NCIT(n,m)), the plane π, {fg̃−gf̃ = 0}, {fh̃−hf̃ = 0} meet transver-
sally at the point q. Note that if s ∈ {x = y = z = f = f̃ = 0} ⊂ {x = y = z =
fg̃ − gf̃ = fh̃ − hf̃ = 0}, then s 6∈ Sing(NCIT(n,m)). Therefore, NCIT(n,m) has
at at least (n + m− 2)2 − (n− 1)(m− 1) nodes and is not factorial. ¤

3. Useful Tools

The following result is originally due to the paper [6]. It help us to make our
proofs simpler.

Theorem 9. Let Σ be a sets in PN and let d ≥ 2 be an integer. If no dk + 2 points
of Σ lie in a projective k-plane for all k ≥ 1, then Σ imposes linearly independent
conditions on forms of degree d in PN .

Proof. See [7]. ¤

Let Vn,m be a nodal complete intersection of two hypersurfaces Fn and Fm in P5

of degree n and m, n ≥ m, respectively. Then the set of NCIT(n,m) is contained in
the set of Vn,m.

Remark 10. Lemma 8 holds for Vn,m.
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Lemma 11. There exists a hypersurface F̃n in P5 of degree n such that Vn,m =
F̃n ∩ Fm and Sing(F̃n) ⊆ Sing(Vn,m).

Proof. [1, Lemma 33]. ¤

Moreover, we have two lemmas about the position of Sing(Vn,m).

Lemma 12. The following assertions hold:

(1) A curve of degree l in P5 contains at most l(n + m− 2) nodes of Vn,m;
(2) If a plane contains bn(n+m−2)

2 c+1 nodes of Vn,m, then the plane is contained
in Vn,m.

Proof. Let Vn,m ⊂ P5 ∼= Proj(C[x, y, z, w, s, t]). Suppose that Vn,m is given by a
system of equations {

Fn := f(x, y, z, w, s, t) = 0,

Fm := g(x, y, z, w, s, t) = 0.

Then the singular locus of Vn,m is contained in the hypersurface

(13) V ′
n,m := α1(

∂f

∂x

∂g

∂y
−∂f

∂y

∂g

∂x
)+α2(

∂f

∂x

∂g

∂z
−∂f

∂z

∂g

∂x
)+. . .+α5(

∂f

∂x

∂g

∂t
−∂f

∂t

∂g

∂x
) = 0

of degree n + m − 2, where αi ∈ C. Let C ⊂ P5 be a curve of degree l. Since Vn,m

has only nodes as singularities, C ∩ V ′
n,m is zero-dimensional. Thus C contains at

most l(n + m− 2) singular points of Vn,m.
If Vn,m contains no a plane π, then π 6⊂ (Fn ∪Fm). We may assume that π 6⊂ Fn,

since n ≥ m. Then the curve π∩Fn is singular where Fn is singular. By Lemma 11,
we assume that Sing(Fn) ⊆ Sing(Vn,m). Then the curve π ∩ Fn can pass through at
most bn(n+m−2)

2 c points of Sing(Vn,m). ¤

Lemma 14. Let Ξn,m,r = Sing(Vn,m) ∩ Sing(Sr), where Sr is a surface of degree
r ≥ 2, and let #|Ξn,m,r| be a number of Ξn,m,r.

(1) If a plane π ⊂ Sr contains bn(n+m−2)
2 c −#|Ξn,m,r|+ 1 nodes of Vn,m, then

π ⊂ Vn,m;
(2) If an irreducible component Si of Sr contains b in(n+m−2)

2 c − #|Ξn,m,i| + 1
nodes of Vn,m, then Si ⊂ Vn,m.

Proof. Suppose that a plane π ⊂ Sr. Using the notation in (13), let Sr ∩ V ′
n,m|π

be the restriction of Sr ∩ V ′
n,m to π. Because Vn,m has only isolated singularities,

Sr∩V ′
n,m is a curve of degree r(n+m−2). Moreover, the curve Sr∩V ′

n,m|π of degree
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n + m − 2 is singular where Sr ∩ V ′
n,m is singular. If Vn,m contains no planes, then

Sr ∩ V ′
n,m|π can pass through at most bn(n+m−2)

2 c −#|Ξn,m,r| points of Sing(Vn,m).
Note that i ≤ r. Assume that Si 6⊂ Vn,m. Then Si ∩ V ′

n,m is a curve of degree
i(n + m− 2) not contained in Vn,m. Therefore, Si ∩ V ′

n,m cannot meet Vn,m at more
than b in(n+m−2)

2 c −#|Ξn,m,i| points of Sing(Vn,m). ¤
4. A Proof of Theorem 5

We assume that #| Sing(NCIT(n,m))| ≤ (n+m−2)2− (n−1)(m−1). To prove
the factoriality of NCIT(n,m), by Theorem 6, for p ∈ Sing(NCIT(n,m)) we will
construct a hypersurface in P5 of degree 2n + m− 6 that contains all the points of
Sing(NCIT(n, m))\{p} but not the point p, in other word, the set Sing(NCIT(n, m))
is (2n + m − 6)-normal in P5. By Lemma 12(2), we assume that a plane contains
at most bn(n+m−2)

2 c points of Sing(NCIT(n,m)), otherwise, NCIT(n,m) contains a
plane and not factorial by Lemma 8.

4.1. A sextic threefold NCIT(3, 2) in P5 Suppose that #| Sing(NCIT(3, 2))| ≤ 7
and no 5 points of Sing(NCIT(3, 2)) lie on a single plane. By Lemma 12(1), a line
contains at most 3 singular points of NCIT(3, 2). Then the set Sing(NCIT(3, 2))
satisfies the condition of Theorem 9, since #|Sing(NCIT(3, 2))| ≤ 7. Thus, for
p ∈ Sing(NCIT(3, 2)) we can find a quadratic hypersurface in P5 that contains all
the points of Sing(NCIT(3, 2)) \ {p} but not the point p, and NCIT(3, 2) is factorial
by Theorem 6.

4.2. A octic threefold NCIT(4, 2) in P5 Assume that #|Sing(NCIT(4, 2))| ≤ 13
and a 2-plane contains at most 8 nodes of NCIT(4, 2). By Lemma 12(1), a line
passes through at most 4 nodes of NCIT(4, 2). Hence, by Theorem 9, the points
of Sing(NCIT(4, 2)) impose independent linear conditions on forms of degree 4 in
P5, i,e., the set Sing(NCIT(4, 2)) is 4-normal in P5, and NCIT(4, 2) is factorial by
Theorem 6.
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