FACTORIAL NODAL COMPLETE INTERSECTION 3-FOLDS IN \mathbb{P}^5

Kyusik Hong

ABSTRACT. Let X be a nodal complete intersection 3-fold defined by a hypersurface in \mathbb{P}^5 of degree n and a smooth quadratic hypersurface in \mathbb{P}^5 . Then we show that X is factorial if it has at most $n^2 - n + 1$ nodes and contains no 2-planes, where n = 3, 4.

1. Introduction

All varieties are assumed to be projective, normal and defined over \mathbb{C} . A variety is called nodal if all its singular points are only ordinary double points, i.e., nodes. Also, a variety is called factorial if every Weil divisor on it is Cartier. From now on, we shall denote by $\mathbb{NCIT}(n,m)$ a nodal complete intersection threefold of two hypersurfaces G_n and G_m in \mathbb{P}^5 of degree n and m, $n \geq m$, respectively, such that G_m is smooth. In the present article, we study the factoriality of $\mathbb{NCIT}(n,m)$.

The factoriality depends both on local types of singularities and on their global position. Note that a smooth threefold is factorial. Cheltsov [2] obtained a sharp bound on the number of nodes on a factorial nodal hypersurface in \mathbb{P}^4 .

Theorem 1. If $\#|\operatorname{Sing}(\mathbb{NCIT}(n,1))| < (n-1)^2$, then $\mathbb{NCIT}(n,1)$ is factorial.

For $m \geq 2$, Kosta [9] proved the following result.

Theorem 2. If $\#|\operatorname{Sing}(\mathbb{NCIT}(n,m))| < (n+m-2)^2 - (n+m-2)(m-1)$, then $\mathbb{NCIT}(n,m)$ is factorial.

Thereafter, Cynk and Rams [5], Kloosterman [8] consider the case of a nodal complete intersection in projective space of dimension ≥ 5 . Let N be a nodal complete intersection threefold in \mathbb{P}^{3+c} defined by homogeneous equations f_1, \ldots, f_c

Received by the editors April 12, 2022. Accepted April 26, 2022.

 $2010\ Mathematics\ Subject\ Classification.\ 14C20,\ 14J17,\ 14J30.$

Key words and phrases. complete intersection 3-fold, nodal variety, factoriality.

202 Kyusik Hong

of multidegree d_1, \ldots, d_c with $d_1 \leq \cdots \leq d_c$. Suppose that the set $V(f_1, \ldots, f_i)$ is smooth in codimension 3 for $i \leq c-1$. Cynk and Rams [5] gave a sharp bound on the minimal number of nodes of N which contains a smooth complete intersection surface that is not a Cartier divisor. On the other hand, Kloosterman [8] gave a sharp bound on the minimal number of nodes of N which has a slightly different non-degeneracy condition than Cynk and Rams, and assume that either c=2 or $d_1 + \ldots + d_{c-1} < d_c$.

The aim of this article is to give some examples of a factorial $\mathbb{NCIT}(n, m)$ which has many singular points greater than the bound of Kosta [9]. Two papers [1, 9], Example 7, Lemma 8 enable us to propose the conjecture below.

Conjecture 3. $\mathbb{NCIT}(n,m)$ is factorial if it has at most $(n+m-2)^2-(n-1)(m-1)$ nodes and contains no planes.

Remark 4. Because, for m = 1, a complete proof of Conjecture 3 was given in the paper [3], we may assume that $m \ge 2$.

Our main result is the following:

Theorem 5. Conjecture 3 holds for $\mathbb{NCIT}(3,2)$ and $\mathbb{NCIT}(4,2)$.

2. Preliminaries

To check the factoriality of $\mathbb{NCIT}(n, m)$, we use the following theorem.

Theorem 6. $\mathbb{NCIT}(n,m)$ is factorial if the points of $\operatorname{Sing}(\mathbb{NCIT}(n,m))$ impose independent linear conditions on sections in $H^0(\mathcal{O}_{\mathbb{P}^5}(2n+m-6)|_{G_m})$.

Now, we present a non-factorial $\mathbb{NCIT}(n,m)$, which motivates our study.

Example 7 ([9, Example 1.2]). Let X be a complete intersection of two smooth hypersurfaces

$$\begin{cases} G_n := x f(x, y, z, w, s, t) + y g(x, y, z, w, s, t) + z h(x, y, z, w, s, t) = 0, \\ G_m := x \tilde{f}(x, y, z, w, s, t) + y \tilde{g}(x, y, z, w, s, t) + z \tilde{h}(x, y, z, w, s, t) = 0, \end{cases}$$

in $\mathbb{P}^5 \cong \operatorname{Proj} (\mathbb{C}[x,y,z,w,s,t])$ of degree n and $m, n \geq m$, respectively. Then X has exactly $(n+m-2)^2-(n-1)(m-1)$ nodes and contains the plane π defined by $\{x=y=z=0\}$. In this case, X is not factorial and the set $\operatorname{Sing}(X)$ lies on the plane π .

From the above example, if a plane is contained in $\mathbb{NCIT}(n, m)$, then $\mathbb{NCIT}(n, m)$ is not factorial. More precisely, we have the following result.

Lemma 8. If $\mathbb{NCIT}(n,m)$ contains a plane, then $\mathbb{NCIT}(n,m)$ has at least $(n+m-2)^2-(n-1)(m-1)$ nodes and is not factorial.

Proof. Assume that a plane π is given by $\{x = y = z = 0\}$ such that $\pi \subset \mathbb{NCIT}(n,m) \subset \mathbb{P}^5 \cong \operatorname{Proj}(\mathbb{C}[x,y,z,w,s,t])$. Then $\mathbb{NCIT}(n,m)$ can be written as a complete intersection of two hypersurfaces

$$\begin{cases} G_n := x f(x, y, z, w, s, t) + y g(x, y, z, w, s, t) + z h(x, y, z, w, s, t) = 0, \\ G_m := x \tilde{f}(x, y, z, w, s, t) + y \tilde{g}(x, y, z, w, s, t) + z \tilde{h}(x, y, z, w, s, t) = 0 \end{cases}$$

of degree n and m, $n \geq m$, respectively, where G_m is smooth. Because $\mathbb{NCIT}(n, m)$ has only ordinary double points as singularities, the set $\mathrm{Sing}(\mathbb{NCIT}(n, m))$ is contained in the set given by the system of five equations

$$\{x = y = z = f\tilde{g} - q\tilde{f} = f\tilde{h} - h\tilde{f} = 0\},\$$

for $q \in \operatorname{Sing}(\mathbb{NCIT}(n,m))$, the plane π , $\{f\tilde{g}-g\tilde{f}=0\}$, $\{f\tilde{h}-h\tilde{f}=0\}$ meet transversally at the point q. Note that if $s \in \{x=y=z=f=0\} \subset \{x=y=z=f\tilde{g}-g\tilde{f}=f\tilde{h}-h\tilde{f}=0\}$, then $s \not\in \operatorname{Sing}(\mathbb{NCIT}(n,m))$. Therefore, $\mathbb{NCIT}(n,m)$ has at at least $(n+m-2)^2-(n-1)(m-1)$ nodes and is not factorial.

3. Useful Tools

The following result is originally due to the paper [6]. It help us to make our proofs simpler.

Theorem 9. Let Σ be a sets in \mathbb{P}^N and let $d \geq 2$ be an integer. If no dk + 2 points of Σ lie in a projective k-plane for all $k \geq 1$, then Σ imposes linearly independent conditions on forms of degree d in \mathbb{P}^N .

Proof. See
$$[7]$$
.

Let $V_{n,m}$ be a nodal complete intersection of two hypersurfaces F_n and F_m in \mathbb{P}^5 of degree n and m, $n \geq m$, respectively. Then the set of $\mathbb{NCIT}(n,m)$ is contained in the set of $V_{n,m}$.

Remark 10. Lemma 8 holds for $V_{n,m}$.

204 Kyusik Hong

Lemma 11. There exists a hypersurface \tilde{F}_n in \mathbb{P}^5 of degree n such that $V_{n,m} = \tilde{F}_n \cap F_m$ and $\operatorname{Sing}(\tilde{F}_n) \subseteq \operatorname{Sing}(V_{n,m})$.

Proof. [1, Lemma 33].
$$\Box$$

Moreover, we have two lemmas about the position of $Sing(V_{n,m})$.

Lemma 12. The following assertions hold:

- (1) A curve of degree l in \mathbb{P}^5 contains at most l(n+m-2) nodes of $V_{n,m}$;
- (2) If a plane contains $\lfloor \frac{n(n+m-2)}{2} \rfloor + 1$ nodes of $V_{n,m}$, then the plane is contained in $V_{n,m}$.

Proof. Let $V_{n,m} \subset \mathbb{P}^5 \cong \operatorname{Proj}(\mathbb{C}[x,y,z,w,s,t])$. Suppose that $V_{n,m}$ is given by a system of equations

$$\begin{cases} F_n := f(x, y, z, w, s, t) = 0, \\ F_m := g(x, y, z, w, s, t) = 0. \end{cases}$$

Then the singular locus of $V_{n,m}$ is contained in the hypersurface

$$(13) \ V'_{n,m} := \alpha_1 \left(\frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial f}{\partial y} \frac{\partial g}{\partial x} \right) + \alpha_2 \left(\frac{\partial f}{\partial x} \frac{\partial g}{\partial z} - \frac{\partial f}{\partial z} \frac{\partial g}{\partial x} \right) + \ldots + \alpha_5 \left(\frac{\partial f}{\partial x} \frac{\partial g}{\partial t} - \frac{\partial f}{\partial t} \frac{\partial g}{\partial x} \right) = 0$$

of degree n+m-2, where $\alpha_i \in \mathbb{C}$. Let $C \subset \mathbb{P}^5$ be a curve of degree l. Since $V_{n,m}$ has only nodes as singularities, $C \cap V'_{n,m}$ is zero-dimensional. Thus C contains at most l(n+m-2) singular points of $V_{n,m}$.

If $V_{n,m}$ contains no a plane π , then $\pi \not\subset (F_n \cup F_m)$. We may assume that $\pi \not\subset F_n$, since $n \ge m$. Then the curve $\pi \cap F_n$ is singular where F_n is singular. By Lemma 11, we assume that $\operatorname{Sing}(F_n) \subseteq \operatorname{Sing}(V_{n,m})$. Then the curve $\pi \cap F_n$ can pass through at most $\lfloor \frac{n(n+m-2)}{2} \rfloor$ points of $\operatorname{Sing}(V_{n,m})$.

Lemma 14. Let $\Xi_{n,m,r} = \operatorname{Sing}(V_{n,m}) \cap \operatorname{Sing}(S_r)$, where S_r is a surface of degree $r \geq 2$, and let $\#|\Xi_{n,m,r}|$ be a number of $\Xi_{n,m,r}$.

- (1) If a plane $\pi \subset S_r$ contains $\lfloor \frac{n(n+m-2)}{2} \rfloor \#|\Xi_{n,m,r}| + 1$ nodes of $V_{n,m}$, then $\pi \subset V_{n,m}$;
- (2) If an irreducible component S_i of S_r contains $\lfloor \frac{in(n+m-2)}{2} \rfloor \#|\Xi_{n,m,i}| + 1$ nodes of $V_{n,m}$, then $S_i \subset V_{n,m}$.

Proof. Suppose that a plane $\pi \subset S_r$. Using the notation in (13), let $S_r \cap V'_{n,m}|_{\pi}$ be the restriction of $S_r \cap V'_{n,m}$ to π . Because $V_{n,m}$ has only isolated singularities, $S_r \cap V'_{n,m}$ is a curve of degree r(n+m-2). Moreover, the curve $S_r \cap V'_{n,m}|_{\pi}$ of degree

n+m-2 is singular where $S_r \cap V'_{n,m}$ is singular. If $V_{n,m}$ contains no planes, then $S_r \cap V'_{n,m}|_{\pi}$ can pass through at most $\lfloor \frac{n(n+m-2)}{2} \rfloor - \#|\Xi_{n,m,r}|$ points of $\mathrm{Sing}(V_{n,m})$. Note that $i \leq r$. Assume that $S_i \not\subset V_{n,m}$. Then $S_i \cap V'_{n,m}$ is a curve of degree i(n+m-2) not contained in $V_{n,m}$. Therefore, $S_i \cap V'_{n,m}$ cannot meet $V_{n,m}$ at more than $\lfloor \frac{in(n+m-2)}{2} \rfloor - \#|\Xi_{n,m,i}|$ points of $\mathrm{Sing}(V_{n,m})$.

4. A Proof of Theorem 5

We assume that $\#|\operatorname{Sing}(\mathbb{NCIT}(n,m))| \leq (n+m-2)^2 - (n-1)(m-1)$. To prove the factoriality of $\mathbb{NCIT}(n,m)$, by Theorem 6, for $p \in \operatorname{Sing}(\mathbb{NCIT}(n,m))$ we will construct a hypersurface in \mathbb{P}^5 of degree 2n+m-6 that contains all the points of $\operatorname{Sing}(\mathbb{NCIT}(n,m))\setminus\{p\}$ but not the point p, in other word, the set $\operatorname{Sing}(\mathbb{NCIT}(n,m))$ is (2n+m-6)-normal in \mathbb{P}^5 . By Lemma 12(2), we assume that a plane contains at most $\lfloor \frac{n(n+m-2)}{2} \rfloor$ points of $\operatorname{Sing}(\mathbb{NCIT}(n,m))$, otherwise, $\mathbb{NCIT}(n,m)$ contains a plane and not factorial by Lemma 8.

- **4.1.** A sextic threefold $\mathbb{NCIT}(3,2)$ in \mathbb{P}^5 Suppose that $\#|\operatorname{Sing}(\mathbb{NCIT}(3,2))| \leq 7$ and no 5 points of $\operatorname{Sing}(\mathbb{NCIT}(3,2))$ lie on a single plane. By Lemma 12(1), a line contains at most 3 singular points of $\mathbb{NCIT}(3,2)$. Then the set $\operatorname{Sing}(\mathbb{NCIT}(3,2))$ satisfies the condition of Theorem 9, since $\#|\operatorname{Sing}(\mathbb{NCIT}(3,2))| \leq 7$. Thus, for $p \in \operatorname{Sing}(\mathbb{NCIT}(3,2))$ we can find a quadratic hypersurface in \mathbb{P}^5 that contains all the points of $\operatorname{Sing}(\mathbb{NCIT}(3,2)) \setminus \{p\}$ but not the point p, and $\mathbb{NCIT}(3,2)$ is factorial by Theorem 6.
- **4.2.** A octic threefold $\mathbb{NCIT}(4,2)$ in \mathbb{P}^5 Assume that $\#|\operatorname{Sing}(\mathbb{NCIT}(4,2))| \leq 13$ and a 2-plane contains at most 8 nodes of $\mathbb{NCIT}(4,2)$. By Lemma 12(1), a line passes through at most 4 nodes of $\mathbb{NCIT}(4,2)$. Hence, by Theorem 9, the points of $\operatorname{Sing}(\mathbb{NCIT}(4,2))$ impose independent linear conditions on forms of degree 4 in \mathbb{P}^5 , i,e., the set $\operatorname{Sing}(\mathbb{NCIT}(4,2))$ is 4-normal in \mathbb{P}^5 , and $\mathbb{NCIT}(4,2)$ is factorial by Theorem 6.

References

- 1. Cheltsov, I.: Factoriality of nodal three-dimensional varieties and connectedness of the locus of log canonical singularities. Mat. Sb. 197 (2006), 387-414.
- 2. Cheltsov, I.: Factorial threefold hypersurfaces. J. Algebraic Geom. 19 (2010), 781-791.
- 3. Cheltsov, I.: On a conjecture of Ciliberto. Sb. Math. 201 (2010), 1069-1090.
- 4. Cynk, S.: Defect of a nodal hypersurface. Manuscripta Math. 104 (2001), 325-331.

206 Kyusik Hong

- 5. Cynk, S. & Rams, S.: Non-factorial nodal complete intersection threefolds. Commun. Contemp. Math. 15, no. 5, 1250064, 14 pp (2013)
- 6. Edmonds, J.: Minimum partition of a matroid into independent subsets. J. Res. Nat. Bur. Standards Sect. B **69 B** (1965), 67-72.
- 7. Eisenbud, D. & Koh, J.-H.: Remarks on points in a projective space. in: Communicative Algebra, Berkeley, CA, in: Mathematical Science Research Institute Publications, vol. **15**, Springer, New York, 1987, pp. 157-172.
- 8. Kloosterman, R.: Nodal complete intersection threefold with defect. arXiv preprint arXiv:1503.05420. (2015), 1-21.
- 9. Kosta, D.: Factoriality of complete intersections in P⁵. Proc. Steklov Inst. Math. **264** (2009), 102-109.

Department of Mathematics Education, Jeonju University, Jeonju 55069, Republic of Korea

 $Email\ address: {\tt kszooj@jj.ac.kr}$