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HEART AND COMPLETE PARTS OF (R,S)-HYPER BI-MODULE

M. NOORANIAN? AND B. Davvazb*

ABSTRACT. In this article, we investigate several aspects of (R, S)-hyper bi-modules
and describe some their properties. The concepts of fundamental relation, completes
part and complete closure are studied regarding to (R, S)-hyper bi-modules. In par-
ticular, we show that any complete (R, S)-hyper bi-module has at least an identity
and any element has an inverse. Finally, we obtain a few results related to the heart
of (R, S)-hyper bi-modules.

1. INTRODUCTION AND PRELIMINARIES

Let R and S be rings and suppose that M be a left R-module and a right S-
module. Then M is called a (R, S)-bimodule if for all r € R, s € S and m € M,
(rm)s = r(ms).

For positive integers n and m, the set M, (T") of nx m matrices of real numbers
is an (R, S)-bimodule, where R is the ring M, (T) of n x n matrices, and S is
the ring M,,(T) of m x m matrices. Addition and multiplication are carried out
using the usual rules of matrix addition and matrix multiplication; the heights and
widths of the matrices have been chosen so that multiplication is defined. Note that
M, «m(R) itself is not a ring (unless n = m). The crucial bimodule property, that
(rx)s = r(xzs), is the statement that multiplication of matrices is associative.

A hypergroupoid (H,o) is a non-empty set H together with a hyperoperation o
defined on H, that is, a mapping of H x H into p*(H), the family of non-empty
subsets of H. If (z,y) € H x H, its image under o is denoted by zoy. If A, B are
non-empty subsets of H then A o B is given by

AoB= |J aob.
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If x € H, then z0 A is used for {x}oA and Aox for Ao{z}. A hypergroupoid (H, o)
is called a hypergroup in the sense of Marty [15] if for all z,y,2 € H the following
two conditions hold: (i) x o (yoz) = (xoy)oz, (ii) xo H = Hox = H. The
second condition is called the reproduction axiom. A hyperring [11, 17] is a multi-
valued system (R, +, o) which satisfies the ring-like axioms in the following way: (1)
(R,+) is a hypergroup in the sense of Marty, (2) (R, o) is a semihypergroup, (3)
the multiplication is distributive with respect to the hyperoperation +. Let (M, +)
be a hypergroup and (R, +,-) be a hyperring. According to [18] M is said to a left
hypermodule over the hyperring R if there exists - : Rx M — p*(M), (a,m) — a-m
such that for all a,b € R and m1, me, m € M, we have (1) a-(mi1+ma) = a-m1+a-ma,
(2) (a+b)-m=(a-m)+(b-m), (3)(a-b)-m =a-(b-m). Basic definitions and
propositions about the hyperstructures are found in [6, 7, 9, 10, 18]. The notion of
right hypermodules can be defined similarly.

Definition 1.1 ([16]). Let R, S be hyperrings and let M be a left R-hyper module
and a right S-hypermodule. Then M is called an (R, S)-hyperbimodule if for all
reR, seSand me M, (rm)s =r(ms).

Example 1. If R is a hyperring, then R itself is an (R, R)-hyperbimodule and so
is R™.

Example 2. Any two-sided hyperideal of a hyperring R is an (R, R)-hyperbimodule.

Example 3. If R, S are hyperrings and R C S, then S is an (R, R)-hyperbimodule.
It is also (R, S) and (S, R)-hyperbimodules.

Example 4. Let M be an (R, S)-hyper bi-module, N a left R-subhyper bi-module
and T a right S-subhyper bi-module of M. If set P := NNT (P # () then
(M/P, ®p) with the following hyperoperation is an (R, S)-hyper bi-module.

RxM/P xS — M/P
(rrm+P,s)—r-mxs+ P.

We call this the quotient hyperbimodule M on P.

Example 5. Let R, S be rings, M a left R-module and right S-module. Let P, G

be respectively subrings of R, S which satisfy in the following condition:

V{a,b} C R, aGbG = abG
V{d,b'} CS, o PVP=alP
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We define the relation p on M in the following way:
zpy< 1 €G, taeP: z=y+t1+t
also hyperoperation @ on the set M/p in the following way:
@y :={weM/P|wCzZ+7y)}

Now, we consider quotient hyperrings R/G = {@ = aG | a € R} and S/P = {b =
bP | b e S}. Then, (M/p,®) with the following hyperoperation is an (R/G,S/P)-
hyperbimodule

R/GXxM/pxS/P— M/p

(a,z,b) — a-x X b.
Example 6. Let M be a right A-hypermodule and N be a right A-subhypermodule

of M. Also, suppose that M is a left B-hypermodule and T is a left B-subhypermodule
of M. Set P=NNT (P # () and define the relation p in the following way:

Y(z,y) € M? zpy & z+P=y+P.

Obviously, p is an equivalence relation on M. The set M/p with the following
hyperoperations is an (A, B)-hyperbimodule:
(x+P)®d(y+P)={2+P|zex+y},
b (x+P)Oa=bxxz-a+ P,

foralla € Aand b € B. Clearly, the condition (bm)a = b(ma) holds for all m € M/p.

The relation [ was introduced by Koskas [14] and studied mainly by Corsini
[6] and Freni [12, 13|, and many others. Vougiouklis defined the relation v on
hyperrings.

Definition 1.2 ([17]). Let R be a hyperring. We define the relation v as follows:
zvyy if and only if there exist n € N, (k1,...,k,) € N* and (z;1,...,24,) € RF
such that
n ki
x,y € Z (wa>
i=1 =1
The relation 7 is reflexive and symmetric. Let +* be the transitive closure of ~.
Then the relation « is the smallest strongly regular relation such that the quotient
R/~* is a ring.
The following definition for the first time is introduced by Vougiouklis. We refer
the readers to [18].
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Definition 1.3 ([18]). Let R be a hyperring and M be a hypermodule over R. The

relation ¢ is defined as follows:

zey < AneN, I(my,...,my) € M", k1, ko, ... ky) € N,

Iwa, iz, - - 2ik;) € RF

such that
n n; kij
! ! !
T,y € E m;;  m; =m; or m;= E < xzjk>mz
i=1 j=1 k=1

The relation € is reflexive and symmetric. Let €* be the transitive closure of e.
Then €* is a strongly regular relation both on (M, +) and M as an R-hyper module.
Also, the (abelian group) M/e* is an R/7v*- module, where R/~* is a ring and the
relation €* is the smallest equivalence relation such that the quotient M/e* is an
R/~*- module.

If M is an R-hyper module, then we set

e ={(m,m) | me M}

and for every integer n > 1, €, is the relation defined as follows:

n
Teny & T,y € Zm;
i=1

Obviously, for every n > 1, the relation €, is symmetric, and the relation € = U €n
n>0
is reflexive and symmetric. If M is a hypermodule over a hyperring R and n > 1

then ¢, C €,41.
The fundamental relation w* on M can be defined as the smallest equivalence
relation such that the quotient M /w* be a bimodule over the corresponding funda-

mental ring such that M/w* as a group is not abelian [16].

Definition 1.4 ([16]). Let R and S be hyperrings and suppose that M is an (R, S)-
hyper bi-module. We define the relation w as follows:

zwy if and only if there exist p € N, (mq,...,my,) € MP, (ni,n9,...,np) €
NP, (ki1 kiz, - king) € N, 1y € R, (0, nh,...,n,) € NP, (kgl,sz?,...,k;n;) €
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N7 siji € S, such that

my; or
ng ki
ml<z (H Sijk)) or
p j=1 k=1

(> (TT ) ) o0

/ ! .
T,y € E m,; when m; = i

(3 (T )X (L))

The relation w is reflexive and symmetric. Let w* be transitive closure of w.

Lemma 1.5 ([16]). w* is a strongly regular relation on (M,+) and M as an (R, S)-
hyper bi-module too.

Theorem 1.6 ([16]). The relation w* is the smallest equivalence relation such that
the quotient M /w* is an (R/Y§, S/v§)-bi-module.

Definition 1.7 ([16]). Let M be an (R, S)-hyper bi-module. Then we set wy =

{(m,m) | m € M} and for every integer n > 1, w, is the relation defined as follows:

n n
any@xEng, yeZm;.
i=1 i=1

Obviously, for every n > 1, the relation w, are symmetric, and the relation w =

U wy, s reflexive and symmetric.
n>0

2. CoMPLETE CLOSURE OF (R, S)-HYPERBIMODULES

In this section we find some properties of complete parts of (R, S)-hyperbimodules
which are valid in every (R, S)-hyperbimodule. In the following m/ is the notation
that defined in Definition 1.4

Definition 2.1 ([16]). Let M be an (R, S)-hyperbimodule and A be a non-empty
subset of M. We say that A is a complete part of M if for every n € N, for every

and for every (mf,...,m})

iméﬂA#@iimggA.

i=1 i=1
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We say an (R, S)-hyperbimodule M is n-complete if ¥Y(m},...,m}), we have
n n
w(Domi) =S mi,
i=1 i=1
n

where w( mé) is the union of all w-classes having a non-empty intersection with

n =
the set Z mi.
i=1

Lemma 2.2 ([16]). Let M be an (R, S)-hyperbimodule. For every z,y,a € M, r € R
and s € S, if xwypy then

—_

* *
W g wn—i—l?

(z+a) Wnt1 (y+a), ( nt1 (y +a),

T+ a) o
(a+2) Bp1 (a+y), (a+2) 0 n (a+y),
rea wp b, reawy, b,

a-swpb-s, a-sw, b-s,

Theorem 2.3. Let M be an R-hyper bi-module and p be a strongly regular relation
on M. Then (M/p,®) is an (R, S)-hyper bi-module if and only if for every (z,y,z) €
M3,
(1) plp(p(z) ® p(y)) ® p(2))
(2) for everyr e R, r.p(x)

p(p(x) ® p(p(y) @ p(2))),
p(r.z).

Proof. Let T := p(x). It is enough to observe that

oy ez ={uluecpl@)+ply)}ez
={v|vep(u)+pz), uepl)+py)}
={v]ve(p(x)+py)+p(2)}.
Analogously, we can write T® (7 ©2) = {w | w € p(z) + (p(y) + p(2))}.
Since p is strongly regular, it follows that with the scalar hyperoperation r-p(x) :=
p(r - x) we obtain a module, and the properties of M as an R-hyper bi-module,
guarantee that the hypergroup M/p is an (R, S)-hyper bi-module. O

Theorem 2.4. Let M be a hyper bi-module, ¢p; : M — M/K be the canonical
projection. If N is a hyper bi-module and f : M — N is an (R, S)-homomorphism,
then g : M/K — N exists such that gopr = f.
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Proof. Tt is enough to check that for every = € M, goy(z) = f(z). First, g is well
defined: in fact ¢pr(z) = ¢pr(y) implies that zKy. Since N is a hyper bi-module, it
follows that f(z) = f(y). Moreover, g is an (R, S)-homomorphism because for every
x,y € M, and v € x + y, we have

g(om(w) +dm(y)) = gom(z +y) = gonm(u) = f(u)
= f(z+y) = f(@) + f(y) = 9om(x) + gpnm (y).

Moreover, for every r € R, and v € r - ¢ we have
9(oum(r- ) = g(dm(v)) = f(v) = f(r-z) =r- f(x) =71 (90m()).
In the similar way, for every s € S, g(¢nr(x) - s) = (9on(x)) - s. O

Theorem 2.5. If f: M — M’ is an (R, S)-homomorphism, then
(1) for all x € M, we have f(C(z)) C C(f(z)).
(2) f determines an (R, S)-homomorphism f*: M/K — M'/K' defined
[ (om () = o (f(2)).
Proof. (1) Tt is easy to check that for every n € N, the following implication
holds;
any:>f(l‘) Wn f(x)
(2) f* is well defined, in fact if ¢ps(x) = Par(y), then zKy. Then, we con-

clude that f(z) K f(y), and so f*or(z) = f*om(y). f* is an (R, S)-
homomorphism because for every u € = + y,

f(om(x) +omy) = [ (0m(u)) = dar(f(u)) = dar(f(u))
= on (f (@) + f(v) = oar (f (2)) + darr (f ()
= [ (@um(x)) + (00 (y)),

and for every r € R and v € r - x, we have
f (@u(r-z) = o (f(v) = oarr (f(r-z)) =7 O (f(2)) = 7 [ (dma ().
O

Theorem 2.6. An (R, S)-hyperbimodule M is n-complete if and only if for every
n

(m},...,ml) and z € E ml, we have

n
=1
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n
Proof. Let M be n-complete, and suppose that z € Z m}. Then, we have

i=1
w(z) C U w(z)zw(im;) zzn:m;
n i=1 i=1
e ;mg

n n
Hence, we obtain w(z) C Y ;" ; m.. Now, if z € Zm;, then w(z) C Zm; Conse-
i=1 i=1

n
quently, if y € Z m/, then
i=1
zwpy = 2wy = Y € w(z).
n n
Conversely, for every (m},...,m}) and 2z € Zm;, we obtain w(z) = Zm;
i=1 i=1

Therefore,
n n
W(Xm)= U e =rm
=1 n =1
S Z m;
i=1
and hence M is n-complete. ]

Theorem 2.7. If M is an n-complete (R, S)-hyperbimodule then for all (m},...,m},),

n
ng s a complete part of M.
=1

m n
Proof. For every m € N and (2,...,2,), if Zz{ N Zm; # (0, then there exists
i=1 i=1
m n m
a€ Z zéﬁz mj. Now, for every y € Z 2}, we have awp,y, and so y € w(a). Hence,
i=1 i=1 i=1
n m n
we get y € w(a) = Z m/. Therefore, we conclude that Z 2 C Z ms. O
i=1 i=1 i=1

Proposition 2.8. If M is a n-complete (R, S)-hyperbimodule, then w = wy,.

Proof. 1t is suffices to prove that w C wy,. Suppose that xwy. Then, there exists

m €N, zwpy. If m < n, then wy,, C wy. If m > n, then there exist (m},...,m},)

m
such that x,y € Zm; Since (M, +) is a hypergroup, it follows that there exist
i=1
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n—1 n
s € M and z € Zm; + s such that y € w(z) = Zm; Therefore, we obtain
i=1 i=1
n
Yy € Zm;, and so zwyy. O

i=1
Definition 2.9. Let A be a non-empty subset of M. The intersection of the complete

parts of M which contain A is called complete closure of A in M. It will be denoted
by Car(A).

Theorem 2.10. Let A be a non-empty subset of M. Assume that
(1) Ki(A) == A,

p p
(2) Kn1(A):={2 |3IpeN, Im),...,mp),x €Y mj, Y minKy(A)# 0},
=1 =1

(3) K(A):= | Kn(A).

n>1

Then K(A) = Cp(A).

Proof. 1t is necessary to prove:

(1) K(A) is a complete part of M,
(2) If A C B and B is a complete part of M then K(A) C B.

Therefore,
P

p
(1) Let Zm; NK(A) # () then there exists n € N such that Zm; NK,(A) #0.
=1 =1

For every y € Zm; we have y € Kp,41(A) and Zm; C K(A), and so K(A) is a

i=1 i=1
complete part of M.

(2) We have A = K;(A) C B. Suppose that B is a complete part of M and

K, (A) C B. We prove that this implies K,,11(A) C B. For every z € K,y there
P P P

exist p € N, (mf,...,mj,) such that » € Zm;, Zm; NK,(A) # (. Thus Zm; N

i=1 i=1 i=1
p

B # 0, hencezEnggBand so Kn+1(A) C B. O O
i=1

Lemma 2.11. The following statements hold:

(1) For alln >2 and m € M, we have K, (Ka(m)) = Kp41(m).
(2) If m € Ky, (z), then z € Kp(m).
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Proof. (1) We can write Ko(Ka(m)) :=
{z|3peN, I(my,...,m,): z€ zp:mg, Zp:m; N Ka(m) # 0} = K3(m).
i=1 i=1
We now proceed by induction: If K,,_1(K2(m)) = K,(m), then
K, (K3(m)) :=

P p
{z|3peN, I(my,...,m,), Io€S,: z€ Zm;, Zm; NK,—1(Ky(m)) #0} =
=1 =1

p p
{z|3peN,I(mi,...,my), Jo€S,: z € Zm;, Zm;ﬂKn(m) # 0} = Kypy1(m).
i=1 i=1

(2)] We do the proof by mathematical induction. It is clear that x € Ky(y) <
y € Ko(x). Suppose that © € K,,_1(y) & y € K,,—1(z). Let € K,,(y), then there
exist ¢ € N, (mj,...,my) and o € S; such that

q q
x € Zm; and Zm; N Kn-1(y) # 0,
i=1 i=1

n

by this it follows that there exists v € Zm; N K,—1(y). Therefore by choosing
i=1

o =1, v € Ko(x) is obtained. From v € K, _1(y) we have y € K,_1(Ka(z)) =

Ky (x). O
Theorem 2.12. The relation vKy < x € K({y}) is an equivalence relation.

Proof. We write Cyy(z) instead of Cpr({z}). Clearly, K is reflexive. Now, let zKy
and yKz, If P is a complete part of M and z € P, then Cp(2) C P, y € P
and consequently x € Cp(y) € P. For this reason x € Cjys(z) that is 2K z. The

symmetrically of K follows in a direct way from the preceding lemma. O

Theorem 2.13. For each (R, S)-hyperbimodule M, if R-m = M =m- S, for every
(r,s) e Rx S and m € M, then K = w*.

Proof. Suppose that xwy. Then
n
In e N:zwy = 3I(m},...,m,), z,y € Zm;
i=1
n
Now, we have Z m} N {z} # 0, and so

i=1
reK(y) =2xeCuly) = 2Ky=wCK.
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For every (r,s) € R x S and m € M, we conclude that w* C K.
Conversely, if Ky, then there exists n € N such that x € K, 1(y). This implies
that there exist m € N, (mfl,... ,m!L) such that

x € ngl and ngl N K, (y) # 0.
- i=1

m

Thus, there exists x1 € ngl N K, (y). Consequently, we obtain zwzy and x; €
i=1

K, (y), and so there exists (m/?,...,m/?) such that

l l l
T1 € Zm?, Zm? NKnp_1(y) 0= Ty € z:m;2 NKy_1(y) = riwre.
i=1 i=1

=1

So as a consequence one obtains:

dx, € Zm;n N an(nfl)(y) = Tp € Kl(y) = {y} = Tn =Y.
i=1

Therefore, zwx . ..wz, = y. This implies that K C w. Since w C w*, it follows that
K C w*. O

Theorem 2.14. If B is a non-empty subset of M, then Cp;(B U Cr(b
beB

Proof. 1t is clear for every b € B, Cy(b) C Cy(B), because every complete part
containing B contains {b}. Therefore, U Cum(b) € Cp(B). In order to prove the

beB
converse remember that Cys(B U K, (B), by Theorem 2.10, one clearly has
n>1
=B=J{o = K0
beB beB

We demonstrate the theorem by induction. Suppose that it is true for n, that is,

B) C U K, (b) and we prove that K,1(B) C U Knp1(b). If z € K, 11(B),
beB beB

then there exist ¢ € N, (m},...,my), o € S, such that

q a
z € Zm; and Zm; N Ky (B) # 0,
i=1 i=1
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q
by the hypothesis induction Z min( U K, (b)) # 0, hence there exists b’ € B such
i=1 beB

q q
that Zm; N K,') # 0. Since z € Zm; one gets z € Kp41(0') and so one has
i=1 =1
prove Kpy1(B) C | J Kny1(b). Therefore, Crr(B) C | ] Car(b). O
beB beB
Corollary 2.15. If A is a complete part of M, then for every B € P*(M), A+
B, B+ A are complete parts of M.

Proof. We have: Cpy(A+B)=A+B+HM)=A+HM)+B=Cny(A)+B=
A+ B. O

Corollary 2.16. Let A € P*(M). Then, A is a complete part of M if and only if
A+ H(M) = A.

Proof. We have Cp(A) = A+ H(M) = A. O

Corollary 2.17. I[f Ae P*(M), then HM)+ A=A+ H(M)=Cy(A).

3. w!-COMPLETE (R, S)-HYPER BI-MODULES

In [3], Davvaz and Anvariyeh studied #-part and 6-closure of hypermodules. Also,
see [4, 5].

Definition 3.1. An (R, S)-hyper bi-module M is said to be w}-complete (R,S)-
hyper bi-module if there exists n € NU {0}, and n is the smallest integer such that

* ok * *
wy =w* and w; #wr_ .

Lemma 3.2. An (R, S)-hyper bi-module M is w(-complete if and only if M is an
(R, S)-bi-module.

Proof. Suppose that M is an wg-complete (R, S)-hyper bi-module. Then w§ = w*,
and hence we C wy and wy C wy. Now, for every x € m1 + mg and y € mg + m1, we
have zwsy, so x = y. Also, for every z,y € - m, or x,y € m - s, we have zw1y, so
x = y. Thus, we conclude that m; + mo = mo + mq, r - m and m - s are singleton.
Therefore, we conclude that M is an (R, S)-bi-module.
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n n
Conversely, if M is an (R, S)-bi-module, then Z m}, is singleton and | Z mi| = 1.
i=1 i=1

n n
By the definition, zw,y if and only if x = Zm;, y = Zm;, thus x = y and
i=1 i=1
TWwoyY- ]
Corollary 3.3. If M is an w};-complete (R, S)-hyper bi-module, then M/w is an
(R/T'},, S/T'g)-bi-module.

Proposition 3.4. Every finite (R, S)-hyper bi-module is w} -complete, for some n.

Proof. Since M is finite, it follows that the succession wj C w3 C ... is stationary.

Thus, there exists n € N such that w;, = w* and wj, # wy,_;. O

Let M be an (R, S)-hyper bi-module and 7 : M — M/w* be the canonical
projection. We set H(M) := 70y, )-

Theorem 3.5. For every non-empty subset A of an (R, S)-hyper bi-module M, we
have

(1) 7~ Y(7(A) =H(M)+ A=A+ H(M).

(2) If A is a complete part of M, then 71 (7(A)) = A.

Proof. (1) For every x € H(M)+ A, there exists a pair (a,b) € H(M) x A such that
z € a+b,son(x) =mn(a)®7w(b) = 0pr/ @ mw(b) = m(b). Therefore 2 € 7~ (n(b)) C
7 (r(A)).

Conversely, for every € 77 1(7(A)), an element b € H exists such that 7(z) =
7(b). By the reproducibility, there is a € M such that z € a + b, and so 7(b) =
m(x) = m(a) ® m(b). This implies that m(a) = 0pr/+ and a € 71 (0pyy+) = H(M).
Therefore, we have z € a+b C H(M)+ A. This shows that 71 (7 (A)) = H(M)+ A.
In the same way, we can prove that 71 (7(A)) = A+ H(M).

(2) It is obvious that A C 7~ 1(7(A)). Moreover, if z € 7=1(7(A)), then there
exists an element b € A such that 7(z) = 7(b). Since A is a complete part, it follows
that = € w*(z) = w*(b) C A and therefore 771 (7(4)) C A. O

Theorem 3.6. We have

(1) If for every (v,w) € H(M)?, vwpw, then w = wyi1
(2) If for every (v,w) € H(M)?, vwiw, then w =w} ;.
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Proof. (1) If zwy, since H(M) + M = M + H(M) = M, then there exists (v, w) €
H(M)? such that y € x+v and y € 2 +w. By hypothesis vw,w. Now, using Lemma
2.2, we have (z +v) Wpt1 (¢ + w), whence zwy, 11y, and so w C wy 1.

(2) The result follows from (1) and Lemma 2.2. O

Corollary 3.7. If vwiw, for every (v,w) € H(M)?, and there ewists (u',w') €
H(M)? such that (W', w') ¢ w¥_,, then M is wj;-complete or w_-complete.

4. COMPLETE (R, S)-HYPER BI-MODULES

In this section, we present an important class of (R, S)-hyper bi-module: complete
(R, S)-hyper bi-modules. We investigate some interesting properties of this class of
(R, S)-hyper bi-module, for instance we show that any complete (R,S)-hyper bi-
module has at least an identity and any element has an inverse.

If M is an (R, S)-hyper bi-module and A is a non-empty subset of M, then we
recall the complete closure of A by C(A).

Theorem 4.1. Let M be an (R, S)-hyper bi-module. The following conditions are

equivalent

(1) for alln>1, m},...,ml and for all a € Zm’z, C(a) = Zm;,

=1 =1
(2) for allmi,...,m], C(Zm;) = Zm;,
i=1 i=1
Proof. (1 = 2): We have C’( . mé) = U C(a) = Zn:m;
=1 n i=1

aeE m;

i=1

n n
(2= 1): From a € Zm;, we obtain C(a) C C(Z mh) = Zm; This means
i=1 i=1 i=1

that C'(a) N Zm; # (), whence Zm; C C(a). Therefore, C(a) = Zm; O
i=1 i=1 i=1

Definition 4.2. An (R, S)-hyper bi-module is complete if it satisfies one of the

above equivalent conditions.
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Example 7. Suppose that R = {x,y}. Then (R, +,) is a hyperring, where

+ x Y x Y
x|z oy x| R R
Y Y x y | R R

If we consider R as a (R, R)-hyper bi-module, then it is easy to check that the

condition (2) of Theorem 4.1 is satisfied. Therefore, R is complete.

Corollary 4.3. If M is a complete (R, S)-hyper bi-module, then either there exist

n
/ / * _ !/
mf,...,m, such that w*(z) = g m;.
i=1

Theorem 4.4. If M is a complete (R, S)-hyper bi-module, then

(1) HM) ={ee M :Vz € M,z € x +eNe-+x}, which means that H is the
set of two-sided identities of H.

(2) (M, +) has at least an identity and any element has an inverse and reversible

Proof. (1) If u € H(M), then for all m € M, we have m € C(m) = m+ H(M) =
m ~+ u. Similarly we have mu + m, which means that u is a two-sided identity of M.

Conversely, any two-sided identity w of M is an element of H (M), since 7(u) = 0.

(2) Let a,b,c be elements of M and e be a two-sided identity, such that e €
b+ana+c. Then,b+a=H(M)=a+canda+bCa+b+cCa+H(M)+c=
H(M)+a+c= H(M), hence a+b = H(M), so b is an inverse of a. Moreover,
if a € u+wv, then HM) =b+a C b+ u+ v, so for any inverse v’ of v, we have
Ve HM)4+v Cb+uvv' =b+u+ H(M) = b+ u. Similarly, from here we obtain
v €v+b,and so v’ +a Cv+b+a=C(v), whence v C C(v) = u' 4 a. In a similar

way, we obtain uav’. O

Definition 4.5. An (R, S)-hyper bi-module is called flat if for all subhyper bi-
module K of M, we have H(K) = H(M)NK.

Example 8. Let R = {0,1,2,3} be a set together with the hyperoperation 4+ and

the binary operation - defined as follows:

F10 1 2 3
00 1 2 3
11 o 2 3
2 |2 2 {0,2,3} {23}
313 3 {23} {0,1,2}
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and a-b=0 for all a,b € R. Then (R, +,-) is a hyperring. According to Example 1,
R is an (R, R)-hyper bi-module. Clearly, {0}, {0,1} and R are subhyper bi-modules
of R. Since H({0}) = {0}, H({0,1}) = {0} and H(R) = {0}, we conclude that

H({0}) = H(R) n {0},
H({0,1}) = H(R) n{0,1},
H(R) = H(R)NR.

This means that R is a flat (R, R)-hyper bi-module.
Theorem 4.6. Any complete (R, S)-hyper bi-module is flat.

Proof. Let M be a complete (R, S)-hyper bi-module and suppose that K is a sub-
hyper bi-module M. We have

HM)NK ={eeM:VxeMuzcx+eNe+z}NK
={ee K:VeeM,xex+ene+a} C HK).

Moreover, we have
y € Ok (z) = ywir = ywyr =y € Cy(z),

which means that Cx(x) C Cp(x). Clearly, HM)NK # 0. Ilf x € HM)NK C
H(K), then Ck(z) = H(K), Cy(z) = H(M). Hence H(K) C H(M) whence
H(K) C H(M)N K. Therefore, we have H(K) = H(M)N K. O

Corollary 4.7. If K is a subhyper bi-module of a complete (R, S)-hyper bi-module
M, then H(K) = H(M).

Proof. Set x € H(M)NK. We have H(M) = C(z+z) = xz+x C H(M)NK, whence
H(M) C H(M)NK, then we apply the above theorem. Hence, H(K) = H(M). O

Theorem 4.8. Let M and N be two complete (R, S)-hyper bi-modules and f : M —
N be a good homomorphism. Then we have f(H(M)) = H(N).

Proof. Let x € H(M). Then z +x = H(M), whence f(z) + f(x) = f(H(M)). On
the other hand, f(z) is an identity of N, since x is an identity of M, which means
that f(z) € H(N). Therefore, H(N) = f(z) + f(z) = f(H(M)). O

5. HEART OF (R, S)-HYPERBIMODULES

In [8], Corsini and Leoreanu investigated the heart of hypergroups. In [1] and

[2], Anvariyeh and Davvaz studied the characterizations of hearts of hypermodules,
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and established a few results concerning the sequence of heart. In this section, we

examine and study the heart of (R, S)-hyper modules.

Theorem 5.1. Let M be an (R, S)-hyper bi-module and B the union of summations
n

of finite numbers ofz ml, containing at least one right and at least one left identity
i=1
and be scalar multiplicatively closed. Then B = H(M).

Proof. We set Ej(E,) the set of left (right) identities and T'={P € B | PN E; #

0, PNE, # 0}. Furthermore, for every = € M, we denote with ¢;(x)(i,(z)) the set of

left (right) inverses of x. The first, we prove that for every a € B, i;(a) C B D i,(a).
n

Let a € M, then a Z mj = P € T exists such that a € P. If ’ € 4;(a), e’ € i exists
i=1
such that € € ' + a; if a” € i)(a),€” € E, exists such that ¢’ € a + a”. We now
n

consider the P, = a' + Zm; +a+d”, we have P C T, in fact {¢/,e"} Ce' +¢€” C
i=1
a +a+a+a’ C Pp. Furthermore, {a’,a”"} C Pi; in fact ' + a+a” C P, and

ded+e" Cd+a+a alsoad" € +d" Ca +a+d.

n
Now, we prove that B is a complete part of M. Let a € Zmé N B # (0, hence
i=1

t
there exists Zzé = P € T such that a € P. Now let ¢’,€¢” be the left and right

i=1
1dent1tles respectwely We have a’, a” E M such that €' € a’ + a, e” € a+a”. Then

Zm ceé —i—Zm +e'Cd —i—a—i—Zm +ta+d Cd +P+Zm +P+d" D
=1 =1 =1 =1

n n
a'+a+a+a” 2 {e,e"}, thus a’—l—P—i—Z mi+P+a” = P;. Therefore Zm; CheT
i=1 i=1

n
and for this reason Zm; C B.

Let a,b € M, suclﬂlthat a€ P be @ where P,QQ € T. Then a + b € B. Also, for
every (r,s) e Rx S,r-aC Banda-sC B.

Furthermore, B satisfies the conditions of reproducibility. Since M is an (R, 5)-
hyper bi-module, the properties of M as an (R, S)—hyperbimodule, guarantee that
the hypergroup B is an (R, S)-hyper bi-module. It is clear that B C H(M). As seen
from the above, it turns out that B is a complete part subhyper bi-module, thus
H(M) C B. O
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We denote Z(A) the set hypersums A of elements of M such that C'(A4) = A.
C

Theorem 5.2. If M is an (R, S)-hyper bi-module and (x}, ..., x}) such that Z z; €

=1
n n
Z(M), then there exists (yi,...,y,) such that ZJ?; + Z yi = H(M).
C =1 =1
n; kij
Proof. We set x} = Z (H rijk) x;. For 1 <t < mn, let a; be an element of H(M).
J=1 k=1
Then, there exists y; € M such that a; € x; + y;, and hence
ne kij ne  ktj ny  ktj
Z H Tejkar © Z H TtjkTt + Z H reikYe = Ty + Yj
j=1 k=1 j=1 k=1 j=1 k=1
Since H(M) is a complete part, it follows that =} + y; C H(M). Therefore
n n n—1
doaity, =HM)+ Y af+y,=> aj+HM)+z),+1,
i=1 i=1 i=1
n—1 n—1
=Y @+ H(M)=H(M)+>_
i=1 i=1
and so
n n—2 n—2
Syt = HM)+ Y af+al,_+y, = HM)+ ) .
=1 =1 =1

Going on the same way one arrives to

n n
S ai+ > yi=H(M)+ai +y) = HM).
=1 =1

Lemma 5.3. Let (M,+) be an (R, S)-hyper bi-module, then
(1) M — H(M) is a complete part of M.
(2) If M — H(M) is a hypersum, then H(M) is also a hypersum.

Proof. (1) Tt is straightforward.
(2) For (1), M — H(M) is a complete part. Now by using Theorem 3.2, the
proof is completed.
U
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Remark 1. Let M be an (R, S)-hyper bi-module endowed with a complete hyper-
sum. The following implication is satisfied for every A € P*(M):

AﬂZméz@éC(A)ﬂZméz(/).
i=1

=1

Assume that z € C(A) N ng, then a € A exists such that z € C(a), hence
i=1

C(a) = C(z). The hypothesis Zn: m; = C(imé) implies

cxec |J cw :C(im> :iml
ye Z;m;

Therefore a € A, a € C(z) C Z m}, where Zm; N A # () which absurd.
i=1 i=1

Let (M,+) be an (R, S)-hyper bi-module. Let’s consider the sequence
(*) MDHM)=H DHHM)=H2...0H D Hy1 D...DH, D ...

Proposition 5.4. Let M be an (R, S)-hyper bi-module. Then the following condi-
tions are equivalent:
(1) The sequence (x) is finite;
(2) there is (n, k) € N2, where n > k+1, such that H, is a complete part of Hy;
3) there is (n, k) € N? where n > k+ 1, such that for any (x,y) € (Hy — H,) X
(Hy, — Hy,); (x+y) N (Hp — Hy) # 0 implies x +y C Hy — Hp;
(4) there is (n,k) € N2 where n > k + 1, such that for any H, is an wy-

conjugable.

Proof. (1 = 2) If the sequence (x) is finite, then there is n € N such that H,, = H,_1,
hence H,_o is a complete part of H,,.
(2 = 3) If H, is a complete part of Hy, then Hy — H,, is a complete part of Hy.
(3 = 4) Ones proves easily that for any s € N, H; is a closed subhyperbimodule
of M. Moreover, for all a,b € Hy, if {a,b} C Hy — H,, we have a + b C H,, if
a # b and |{a,b} N Hy,| =1, we have a + b C Hj, — H,. Then, we obtain that H, is
Hj.-conjugable.
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(4 = 1) We know H,, is a complete part subhyperbimodule of Hy. Hence Hy,1 =
H(Hy) € H, C Hyyy from which H, = Hyiy. So, we have: H,11 = H(H,) =
H(Hpy1) = Hyyo 2 Hyp = Hyy1 O Hyyo. Therefore, H, = Hygyo = Hp4q. Let
Hyt+s = Higyq. It follows Hyts41 = H(Hpts) = Hipy1 = Hiyo = Hpqq. Then, for
any m such that m > n, we have H(M) = H,. O

Theorem 5.5. Let (M, +) be an (R, S)-hyper bi-module such that the sequence (x)
1s finite, and let N be a complete part subhyper bi-module of M. Then there is p € N
such that Hy4 1 (N) = Hpp1(M).

Proof. Let’s remark that H(IN) is a subhyper bi-module of H(M). Indeed, for any
a € H(K), there is e € N such that a € a + e, it’s clear that a € wi(e) Cwpr(e) =
H(M). Moreover, since N is a complete part subhyper bi-module of M, we have
H(M) C N. Then H{(N) € Hi(M) C N. For any s > 1, from Hs(N) C Hs(M) C
Hs;_1(N), one obtains Hs11(N) C Hs41(M) C Hg(N), and hence N O H;(M) 2
H{(N) 2 Hy(M) 2D Hy(N)D ...

By Theorem 5.4, there is (n,p) € N x N, where n > p + 1, such that H,(M) =
H, 1 (M), therefore Hy1(M) = Hp1(N). O

Remark 2. If Ny, No are subhyperbimodules of M, then
H(N1 N NQ) < H(Nl) N H(NQ)

Proposition 5.6. If N1, Ny < M, where M has a finite sequence (x), then there
exists p € N, such that Hyy1(N1 N Na) = Hpp1 (H(N1) N H(N3)).

Proof. Let’s consider M := Ny N Ny and N := H(N;) N H(Ns). Then N is a sub-
hyperbimodule, complete part of M. (We can verify this using the definition of a

complete part.) Now, we can use the proof of Theorem 5.5. 0
Also, we can give a relation for (R, S)-subhyper bi-module of M :
dpeN, H, i(NiNNaN...NNyp) =Hp1(HN1)NH(N2)N...NH(Np,)).
Remark 3. If Ny, Ny < M, then
H(Ny) € Nyn H({N;UN3)).

Generally, we have not equality. Let M; and My be two (R, S)-hyper bi-modules. Let
mq,nq arbitrary in M; and mg, ne arbitrary in M. Let’s define on M = MjUM,U{a}
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(a ¢ My U My) with the following hyperoperations:

+/ ‘ my a ma
nilni+m  a M
a a M, M

9 M M ng+ mgo

and for every (r,s) € R x S,z € M; and y € My scalar multiplication

r'ex=rqx, r'y=roy x's=x15 y's=y-2s

and r ' a = a- s = a. We can easily verify (M, +') with scalar multiplication - is

an (R, S)-hyper bi-module. We consider subhyper bi-modules Ny = M U{a}, Ny =
My, NiUNs =M, <N1 UN2> = M, then H((Nl UN2>) =M. So

H(Nl) = M; ; NlﬂH(<N1 UNQ)) =N; = M1U{a}.

Theorem 5.7. Let M be an (R, S)-hyper bi-module and N1, N2 be two subhyper bi-
module of M. If for every a € (N1UNa)— (N1UN3), there exists (n1,n2) € Ni X Na,
such that a € ny + ny and if (H(Ny) U H(N2)) is a closed subhyper bi-module of
H({(N1 U N3)) then (H(N1)U H(N3)) = H((N1 U Na)).

Proof. We shall prove that (H(NN1) U H(N2)) is conjugable in (N7 U Na) as hyper
bi-module. (H(N1) U H(N3)) is closed in (N7 U Na) because, from a € b+ x, where
(a,b) € (H(N1) U H(N5))? and = € (Ny U Ny), it results (a,b) € (H?>(N1 U N3))
and so x € H({(N; U Ny)). Using now the condition given in the proposition, = €
(H(N1) U H(Nz)).
As regards an arbitrary element a € (N1 U N3), we have three situation:
a€ Ny =3d € Ny, a+a CH(Ny) C(H(N1)UH(Na));
a € Ny=3d' € Nay a+a’ C H(Ny) C (H(N1)U H(Na));
a € (N1 UNy) — (N1 U N3) = Ing € Ny,3ng € No,a € ny + no.
For n; there exists n, € N;, such that n; +n, € Hy,, i =1,2.
So, a -} + ny C (1} + 1) + (ny + my) C H(Ny) @ H(N2) € (H(Ny) U H(Na)),
whence for every t € n} +nf, a +t C (H(N1) U H(Na)). O

An (R, S)-hyper bi-module M is called 1—(R, S)-hyper bi-module if H(M) is a

singleton.

Lemma 5.8. If M is a 1-(R, S)-hyper bi-module, then M is an wj-complete (R, S)-
hyper bi-module.
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Proof. Suppose that H(M) = {e}. Then for all m € M, we have m+e = e+ m and

so the classes module w are {e, m}. It follows that w = wy = wj. O

Theorem 5.9. Let M be a 1—(R, S)-hyper bi-module and H(M) = {e}. Then

(1) The w*-classes are the summations e + a, where a € M.
(2) Every (R, S)-subhyper bi-module of M is complete part.
(3) If {M;}icr is a family of (R, S)-subhyper bi-module of M, then ﬂ M; is an
el
(R, S)-subhyper bi-module of M.
(4) The direct product of 1—(R,S)-hyper bi-modules is a 1—(R,S)-hyper bi-

module.

Proof. (1) It is straightforward.
(2) If N is a subhyper bi-module of M, we have N N W (M) # (), for this reason
H(M) C N, hence N = N + H(M) and therefore N is a complete part.

(3) For (2), for every i € I, e € M;. We set M = m M;, hence M # (). Then for
i€l
every x,y € M, b € M exist such that y € b+ x, but for every i € I, for (2), M; is a
closed submodule, thus b € M;. Also, for every r € R, m € M, we have r.m C M.

(4) Set N = HNi’ m' = (m})ier € N, e = (e;)icr- We have zwye if and only if

il
n
M= Mier, 2% = (2P)ier, ..., 2™ = (2/");er, exists such that z,e € Zz'k, that
i=1
n n
is if and only if for each i € I, 2], e; € Zz;k Then 2, = Zz;k =¢;, from z = e,
k=1 k=1
for this reason H(M) = {e}. O

6. CONCLUSION

The notion of (R, S)-hyper bi-modules is a generalization of hypermodules and
bimodules. The heart of an (R, S)-hyper bi-module is the neutral element of the
quotient fundamental bi-module. We studied the properties of the heart and com-
plete parts of (R, S)-hyper bi-modules. In particular, we proved that any compact
(R, S)-hyper bi-module has at least one identity element.

For future research, we will study the properties of exact sequences of (R, S)-

hyper bi-modules.
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