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HEART AND COMPLETE PARTS OF (R,S)-HYPER BI-MODULE

M. Nooranian a and B. Davvaz b, ∗

Abstract. In this article, we investigate several aspects of (R, S)-hyper bi-modules
and describe some their properties. The concepts of fundamental relation, completes
part and complete closure are studied regarding to (R, S)-hyper bi-modules. In par-
ticular, we show that any complete (R, S)-hyper bi-module has at least an identity
and any element has an inverse. Finally, we obtain a few results related to the heart
of (R, S)-hyper bi-modules.

1. Introduction and Preliminaries

Let R and S be rings and suppose that M be a left R-module and a right S-
module. Then M is called a (R, S)-bimodule if for all r ∈ R, s ∈ S and m ∈ M ,
(rm)s = r(ms).

For positive integers n and m, the set Mn×m(T ) of n×m matrices of real numbers
is an (R,S)-bimodule, where R is the ring Mn(T ) of n × n matrices, and S is
the ring Mm(T ) of m × m matrices. Addition and multiplication are carried out
using the usual rules of matrix addition and matrix multiplication; the heights and
widths of the matrices have been chosen so that multiplication is defined. Note that
Mn×m(R) itself is not a ring (unless n = m). The crucial bimodule property, that
(rx)s = r(xs), is the statement that multiplication of matrices is associative.

A hypergroupoid (H, ◦) is a non-empty set H together with a hyperoperation ◦
defined on H, that is, a mapping of H × H into ℘∗(H), the family of non-empty
subsets of H. If (x, y) ∈ H ×H, its image under ◦ is denoted by x ◦ y. If A,B are
non-empty subsets of H then A ◦B is given by

A ◦B =
⋃

a∈A
b∈B

a ◦ b.
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If x ∈ H, then x◦A is used for {x}◦A and A◦x for A◦{x}. A hypergroupoid (H, ◦)
is called a hypergroup in the sense of Marty [15] if for all x, y, z ∈ H the following
two conditions hold: (i) x ◦ (y ◦ z) = (x ◦ y) ◦ z, (ii) x ◦ H = H ◦ x = H. The
second condition is called the reproduction axiom. A hyperring [11, 17] is a multi-
valued system (R, +, ◦) which satisfies the ring-like axioms in the following way: (1)
(R, +) is a hypergroup in the sense of Marty, (2) (R, ◦) is a semihypergroup, (3)
the multiplication is distributive with respect to the hyperoperation +. Let (M, +)
be a hypergroup and (R, +, ·) be a hyperring. According to [18] M is said to a left
hypermodule over the hyperring R if there exists · : R×M → ℘∗(M), (a,m) 7→ a ·m
such that for all a, b ∈ R and m1,m2,m ∈ M, we have (1) a·(m1+m2) = a·m1+a·m2,

(2) (a + b) ·m = (a ·m) + (b ·m), (3)(a · b) ·m = a · (b ·m). Basic definitions and
propositions about the hyperstructures are found in [6, 7, 9, 10, 18]. The notion of
right hypermodules can be defined similarly.

Definition 1.1 ([16]). Let R,S be hyperrings and let M be a left R-hyper module
and a right S-hypermodule. Then M is called an (R,S)-hyperbimodule if for all
r ∈ R, s ∈ S and m ∈ M , (rm)s = r(ms).

Example 1. If R is a hyperring, then R itself is an (R, R)-hyperbimodule and so
is Rn.

Example 2. Any two-sided hyperideal of a hyperring R is an (R, R)-hyperbimodule.

Example 3. If R, S are hyperrings and R ⊆ S, then S is an (R, R)-hyperbimodule.
It is also (R, S) and (S, R)-hyperbimodules.

Example 4. Let M be an (R,S)-hyper bi-module, N a left R-subhyper bi-module
and T a right S-subhyper bi-module of M . If set P := N ∩ T (P 6= ∅) then
(M/P, ⊕P ) with the following hyperoperation is an (R,S)-hyper bi-module.

R×M/P × S −→ M/P
(r,m + P, s) 7−→ r ·m× s + P.

We call this the quotient hyperbimodule M on P .

Example 5. Let R, S be rings, M a left R-module and right S-module. Let P, G

be respectively subrings of R, S which satisfy in the following condition:
{ ∀{a, b} ⊆ R, aGbG = abG
∀{a′, b′} ⊆ S, a′Pb′P = a′b′P.
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We define the relation ρ on M in the following way:

xρy ⇔ ∃t1 ∈ G, t2 ∈ P : x = y + t1 + t2

also hyperoperation ⊕ on the set M/ρ in the following way:

x̄⊕ ȳ := {w̄ ∈ M/P | w̄ ⊆ x̄ + ȳ}.
Now, we consider quotient hyperrings R/G = {ā = aG | a ∈ R} and S/P = {b̄ =
bP | b ∈ S}. Then, (M/ρ,⊕) with the following hyperoperation is an (R/G, S/P )-
hyperbimodule

R/G×M/ρ× S/P −→ M/ρ

(ā, x̄, b̄) 7−→ a · x× b.

Example 6. Let M be a right A-hypermodule and N be a right A-subhypermodule
of M . Also, suppose that M is a left B-hypermodule and T is a left B-subhypermodule
of M . Set P = N ∩ T (P 6= ∅) and define the relation ρ in the following way:

∀(x, y) ∈ M2, xρy ⇔ x + P = y + P.

Obviously, ρ is an equivalence relation on M . The set M/ρ with the following
hyperoperations is an (A,B)-hyperbimodule:

(x + P )⊕ (y + P ) = {z + P | z ∈ x + y},
b⊗ (x + P )¯ a = b× x · a + P,

for all a ∈ A and b ∈ B. Clearly, the condition (bm)a = b(ma) holds for all m ∈ M/ρ.

The relation β was introduced by Koskas [14] and studied mainly by Corsini
[6] and Freni [12, 13], and many others. Vougiouklis defined the relation γ on
hyperrings.

Definition 1.2 ([17]). Let R be a hyperring. We define the relation γ as follows:
xγy if and only if there exist n ∈ N, (k1, . . . , kn) ∈ Nn and (xi1, . . . , xiki) ∈ Rki

such that

x, y ∈
n∑

i=1

( ki∏

j=1

xij

)
.

The relation γ is reflexive and symmetric. Let γ∗ be the transitive closure of γ.
Then the relation γ is the smallest strongly regular relation such that the quotient
R/γ∗ is a ring.

The following definition for the first time is introduced by Vougiouklis. We refer
the readers to [18].
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Definition 1.3 ([18]). Let R be a hyperring and M be a hypermodule over R. The
relation ε is defined as follows:

xεy ⇔ ∃ n ∈ N, ∃(m1, . . . , mn) ∈ Mn, ∃(k1, k2, . . . , kn) ∈ Nn,

∃(xi1, xi2, . . . , xiki) ∈ Rki ,

such that

x, y ∈
n∑

i=1

m′
i; m′

i = mi or m′
i =

ni∑

j=1

( kij∏

k=1

xijk

)
mi.

The relation ε is reflexive and symmetric. Let ε∗ be the transitive closure of ε.

Then ε∗ is a strongly regular relation both on (M, +) and M as an R-hyper module.
Also, the (abelian group) M/ε∗ is an R/γ∗- module, where R/γ∗ is a ring and the
relation ε∗ is the smallest equivalence relation such that the quotient M/ε∗ is an
R/γ∗- module.

If M is an R-hyper module, then we set

ε0 = {(m,m) | m ∈ M}

and for every integer n ≥ 1, εn is the relation defined as follows:

xεny ⇔ x, y ∈
n∑

i=1

m′
i.

Obviously, for every n > 1, the relation εn is symmetric, and the relation ε =
⋃

n>0

εn

is reflexive and symmetric. If M is a hypermodule over a hyperring R and n ≥ 1
then εn ⊆ εn+1.

The fundamental relation ω∗ on M can be defined as the smallest equivalence
relation such that the quotient M/ω∗ be a bimodule over the corresponding funda-
mental ring such that M/ω∗ as a group is not abelian [16].

Definition 1.4 ([16]). Let R and S be hyperrings and suppose that M is an (R, S)-
hyper bi-module. We define the relation ω as follows:

xωy if and only if there exist p ∈ N, (m1, . . . , mp) ∈ Mp, (n1, n2, . . . , np) ∈
Np, (ki1, ki2, . . . , kini) ∈ Nni , rijk ∈ R, (n′1, n

′
2, . . . , n

′
p) ∈ Np, (k′i1, k

′
i2, . . . , k

′
in′i

) ∈
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Nn′i , sijk ∈ S, such that

x, y ∈
p∑

i=1

m′
i when m′

i =





mi or

mi

( n′i∑

j=1

( k′ij∏

k=1

sijk

))
or

( ni∑

j=1

( kij∏

k=1

rijk

))
mi or

( ni∑

j=1

( kij∏

k=1

rijk

))
mi

( n′i∑

j=1

( k′ij∏

k=1

sijk

))
.

The relation ω is reflexive and symmetric. Let ω∗ be transitive closure of ω.

Lemma 1.5 ([16]). ω∗ is a strongly regular relation on (M, +) and M as an (R,S)-
hyper bi-module too.

Theorem 1.6 ([16]). The relation ω∗ is the smallest equivalence relation such that
the quotient M/ω∗ is an (R/γ∗R, S/γ∗S)-bi-module.

Definition 1.7 ([16]). Let M be an (R, S)-hyper bi-module. Then we set ω0 =
{(m,m) | m ∈ M} and for every integer n ≥ 1, ωn is the relation defined as follows:

xωny ⇔ x ∈
n∑

i=1

m′
i, y ∈

n∑

i=1

m′
i.

Obviously, for every n > 1, the relation ωn are symmetric, and the relation ω =⋃

n>0

ωn is reflexive and symmetric.

2. Complete Closure of (R, S)-hyperbimodules

In this section we find some properties of complete parts of (R, S)-hyperbimodules
which are valid in every (R, S)-hyperbimodule. In the following m′

i is the notation
that defined in Definition 1.4

Definition 2.1 ([16]). Let M be an (R, S)-hyperbimodule and A be a non-empty
subset of M. We say that A is a complete part of M if for every n ∈ N, for every
and for every (m′

1, . . . , m
′
n)

n∑

i=1

m′
i ∩A 6= ∅ ⇒

n∑

i=1

m′
i ⊆ A.
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We say an (R, S)-hyperbimodule M is n-complete if ∀(m′
1, . . . , m

′
n), we have

ω
( n∑

i=1

m′
i

)
=

n∑

i=1

m′
i,

where ω
( n∑

i=1

m′
i

)
is the union of all ω-classes having a non-empty intersection with

the set
n∑

i=1

m′
i.

Lemma 2.2 ([16]). Let M be an (R, S)-hyperbimodule. For every x, y, a ∈ M , r ∈ R

and s ∈ S, if xωny then

ω∗n ⊆ ω∗n+1,

(x + a) ωn+1 (y + a), (x + a) ω∗n+1 (y + a),

(a + x) ωn+1 (a + y), (a + x) ω∗n+1 (a + y),

r · a ωn r · b, r · a ω∗n r · b,
a · s ωn b · s, a · s ω∗n b · s,

Theorem 2.3. Let M be an R-hyper bi-module and ρ be a strongly regular relation
on M. Then (M/ρ,⊕) is an (R, S)-hyper bi-module if and only if for every (x, y, z) ∈
M3;

(1) ρ(ρ(ρ(x)⊕ ρ(y))⊕ ρ(z)) = ρ(ρ(x)⊕ ρ(ρ(y)⊕ ρ(z))),
(2) for every r ∈ R, r.ρ(x) = ρ(r.x).

Proof. Let x := ρ(x). It is enough to observe that

(x⊕ y)⊕ z = {u | u ∈ ρ(x) + ρ(y)} ⊕ z
= {v | v ∈ ρ(u) + ρ(z), u ∈ ρ(x) + ρ(y)}
= {v | v ∈ (ρ(x) + ρ(y)) + ρ(z)}.

Analogously, we can write x⊕ (y ⊕ z) = {w | w ∈ ρ(x) + (ρ(y) + ρ(z))}.
Since ρ is strongly regular, it follows that with the scalar hyperoperation r·ρ(x) :=

ρ(r · x) we obtain a module, and the properties of M as an R-hyper bi-module,
guarantee that the hypergroup M/ρ is an (R,S)-hyper bi-module. ¤

Theorem 2.4. Let M be a hyper bi-module, φM : M → M/K be the canonical
projection. If N is a hyper bi-module and f : M → N is an (R, S)-homomorphism,
then g : M/K → N exists such that gφM = f .
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Proof. It is enough to check that for every x ∈ M, gφM (x) = f(x). First, g is well
defined: in fact φM (x) = φM (y) implies that xKy. Since N is a hyper bi-module, it
follows that f(x) = f(y). Moreover, g is an (R, S)-homomorphism because for every
x, y ∈ M, and u ∈ x + y, we have

g(φM (x) + φM (y)) = gφM (x + y) = gφM (u) = f(u)
= f(x + y) = f(x) + f(y) = gφM (x) + gφM (y).

Moreover, for every r ∈ R, and v ∈ r · x we have

g(φM (r · x)) = g(φM (v)) = f(v) = f(r · x) = r · f(x) = r · (gφM (x)).

In the similar way, for every s ∈ S, g(φM (x) · s) = (gφM (x)) · s. ¤

Theorem 2.5. If f : M → M ′ is an (R, S)-homomorphism, then

(1) for all x ∈ M , we have f(C(x)) ⊆ C(f(x)).
(2) f determines an (R, S)-homomorphism f∗ : M/K → M ′/K ′ defined

f∗(φM (x)) = φM ′(f(x)).

Proof. (1) It is easy to check that for every n ∈ N, the following implication
holds;

x ωn y ⇒ f(x) ωn f(x).

(2) f∗ is well defined, in fact if φM (x) = φM (y), then xKy. Then, we con-
clude that f(x) K f(y), and so f∗φM (x) = f∗φM (y). f∗ is an (R, S)-
homomorphism because for every u ∈ x + y,

f∗(φM (x) + φM (y)) = f∗(φM (u)) = φM ′(f(u)) = φM ′(f(u))
= φM ′(f(x) + f(y)) = φM ′(f(x)) + φM ′(f(y))
= f∗(φM (x)) + f∗(φM (y)),

and for every r ∈ R and v ∈ r · x, we have

f∗(φM (r · x)) = φM ′(f(v)) = φM ′(f(r · x)) = r · φM (f(x)) = r · f∗(φM (x)).

¤

Theorem 2.6. An (R, S)-hyperbimodule M is n-complete if and only if for every

(m′
1, . . . , m

′
n) and z ∈

n∑

i=1

m′
i, we have

ω(z) =
n∑

i=1

m′
i.



214 M. Nooranian & B. Davvaz

Proof. Let M be n-complete, and suppose that z ∈
n∑

i=1

m′
i. Then, we have

ω(z) ⊆
⋃

z∈
n∑

i=1

m′
i

ω(z) = ω
( n∑

i=1

m′
i

)
=

n∑

i=1

m′
i.

Hence, we obtain ω(z) ⊆ ∑n
i=1 m′

i. Now, if z ∈
n∑

i=1

m′
i, then ω(z) ⊆

n∑

i=1

m′
i. Conse-

quently, if y ∈
n∑

i=1

m′
i, then

zωny ⇒ zωy ⇒ y ∈ ω(z).

Conversely, for every (m′
1, . . . ,m

′
n) and z ∈

n∑

i=1

m′
i, we obtain ω(z) =

n∑

i=1

m′
i.

Therefore,

ω
( n∑

i=1

m′
i

)
=

⋃

z∈
n∑

i=1

m′
i

ω(z) =
n∑

i=1

m′
i

and hence M is n-complete. ¤

Theorem 2.7. If M is an n-complete (R, S)-hyperbimodule then for all (m′
1, . . . , m

′
n),

n∑

i=1

m′
i is a complete part of M.

Proof. For every m ∈ N and (z′1, . . . , z
′
m), if

m∑

i=1

z′i ∩
n∑

i=1

m′
i 6= ∅, then there exists

a ∈
m∑

i=1

z′i∩
n∑

i=1

m′
i. Now, for every y ∈

m∑

i=1

z′i, we have aωmy, and so y ∈ ω(a). Hence,

we get y ∈ ω(a) =
n∑

i=1

m′
i. Therefore, we conclude that

m∑

i=1

z′i ⊆
n∑

i=1

m′
i. ¤

Proposition 2.8. If M is a n-complete (R, S)-hyperbimodule, then ω = ωn.

Proof. It is suffices to prove that ω ⊆ ωn. Suppose that xωy. Then, there exists
m ∈ N, xωmy. If m ≤ n, then ωm ⊂ ωn. If m > n, then there exist (m′

1, . . . , m
′
m)

such that x, y ∈
m∑

i=1

m′
i. Since (M, +) is a hypergroup, it follows that there exist
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s ∈ M and x ∈
n−1∑

i=1

m′
i + s such that y ∈ ω(x) =

n∑

i=1

m′
i. Therefore, we obtain

y ∈
n∑

i=1

m′
i, and so xωny. ¤

Definition 2.9. Let A be a non-empty subset of M. The intersection of the complete
parts of M which contain A is called complete closure of A in M. It will be denoted
by CM (A).

Theorem 2.10. Let A be a non-empty subset of M. Assume that

(1) K1(A) := A,

(2) Kn+1(A) := {x | ∃ p ∈ N, ∃(m′
1, . . . , m

′
p), x ∈

p∑

i=1

m′
i,

p∑

i=1

m′
i∩Kn(A) 6= ∅},

(3) K(A) :=
⋃

n≥1

Kn(A).

Then K(A) = CM (A).

Proof. It is necessary to prove:

(1) K(A) is a complete part of M,

(2) If A ⊆ B and B is a complete part of M then K(A) ⊆ B.

Therefore,

(1) Let
p∑

i=1

m′
i∩K(A) 6= ∅ then there exists n ∈ N such that

p∑

i=1

m′
i∩Kn(A) 6= ∅.

For every y ∈
n∑

i=1

m′
i we have y ∈ Kn+1(A) and

n∑

i=1

m′
i ⊆ K(A), and so K(A) is a

complete part of M.

(2) We have A = K1(A) ⊆ B. Suppose that B is a complete part of M and
Kn(A) ⊆ B. We prove that this implies Kn+1(A) ⊆ B. For every z ∈ Kn+1 there

exist p ∈ N, (m′
1, . . . , m

′
p) such that z ∈

p∑

i=1

m′
i,

p∑

i=1

m′
i ∩Kn(A) 6= ∅. Thus

p∑

i=1

m′
i ∩

B 6= ∅, hence z ∈
p∑

i=1

m′
i ⊆ B and so Kn+1(A) ⊆ B. ¤ ¤

Lemma 2.11. The following statements hold:

(1) For all n ≥ 2 and m ∈ M , we have Kn(K2(m)) = Kn+1(m).
(2) If m ∈ Kn(z), then z ∈ Kn(m).
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Proof. (1) We can write K2(K2(m)) :=

{z | ∃p ∈ N, ∃(m′
1, . . . , m

′
p) : z ∈

p∑

i=1

m′
i,

p∑

i=1

m′
i ∩K2(m) 6= ∅} = K3(m).

We now proceed by induction: If Kn−1(K2(m)) = Kn(m), then
Kn(K2(m)) :=

{z | ∃p ∈ N, ∃(m′
1, . . . , m

′
p), ∃σ ∈ Sp : z ∈

p∑

i=1

m′
i,

p∑

i=1

m′
i ∩Kn−1(K2(m)) 6= ∅} =

{z | ∃p ∈ N, ∃(m′
1, . . . , m

′
p), ∃σ ∈ Sp : z ∈

p∑

i=1

m′
i,

p∑

i=1

m′
i∩Kn(m) 6= ∅} = Kn+1(m).

(2)] We do the proof by mathematical induction. It is clear that x ∈ K2(y) ⇔
y ∈ K2(x). Suppose that x ∈ Kn−1(y) ⇔ y ∈ Kn−1(x). Let x ∈ Kn(y), then there
exist q ∈ N, (m′

1, . . . , m
′
q) and σ ∈ Sq such that

x ∈
q∑

i=1

m′
i and

q∑

i=1

m′
i ∩Kn−1(y) 6= ∅,

by this it follows that there exists v ∈
n∑

i=1

m′
i ∩ Kn−1(y). Therefore by choosing

σ = 1, v ∈ K2(x) is obtained. From v ∈ Kn−1(y) we have y ∈ Kn−1(K2(x)) =
Kn(x). ¤

Theorem 2.12. The relation xKy ⇔ x ∈ K({y}) is an equivalence relation.

Proof. We write CM (x) instead of CM ({x}). Clearly, K is reflexive. Now, let xKy

and yKz,. If P is a complete part of M and z ∈ P , then CM (z) ⊆ P, y ∈ P

and consequently x ∈ CM (y) ⊆ P. For this reason x ∈ CM (z) that is xKz. The
symmetrically of K follows in a direct way from the preceding lemma. ¤

Theorem 2.13. For each (R, S)-hyperbimodule M , if R ·m = M = m ·S, for every
(r, s) ∈ R× S and m ∈ M , then K = ω∗.

Proof. Suppose that xωy. Then

∃n ∈ N : xωy ⇒ ∃(m′
1, . . . , m

′
n), x, y ∈

n∑

i=1

m′
i.

Now, we have
n∑

i=1

m′
i ∩ {x} 6= ∅, and so

x ∈ K2(y) ⇒ x ∈ CM (y) ⇒ xKy ⇒ ω ⊆ K.
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For every (r, s) ∈ R× S and m ∈ M, we conclude that ω∗ ⊆ K.

Conversely, if xKy, then there exists n ∈ N such that x ∈ Kn+1(y). This implies
that there exist m ∈ N, (m′1

1 , . . . ,m′1
m) such that

x ∈
m∑

i=1

m′1
i and

m∑

i=1

m′1
i ∩Kn(y) 6= ∅.

Thus, there exists x1 ∈
m∑

i=1

m′1
i ∩ Kn(y). Consequently, we obtain xωx1 and x1 ∈

Kn(y), and so there exists (m′2
1 , . . . , m′2

l ) such that

x1 ∈
l∑

i=1

m′2
i ,

l∑

i=1

m′2
i ∩Kn−1(y) 6= ∅ ⇒ ∃x2 ∈

l∑

i=1

m′2
i ∩Kn−1(y) ⇒ x1ωx2.

So as a consequence one obtains:

∃xn ∈
s∑

i=1

m′n
i ∩Kn−(n−1)(y) ⇒ xn ∈ K1(y) = {y} ⇒ xn = y.

Therefore, xωx1 . . . ωxn = y. This implies that K ⊆ ω. Since ω ⊆ ω∗, it follows that
K ⊆ ω∗. ¤

Theorem 2.14. If B is a non-empty subset of M, then CM (B) =
⋃

b∈B

CM (b).

Proof. It is clear for every b ∈ B, CM (b) ⊆ CM (B), because every complete part
containing B contains {b}. Therefore,

⋃

b∈B

CM (b) ⊆ CM (B). In order to prove the

converse remember that CM (B) =
⋃

n≥1

Kn(B), by Theorem 2.10, one clearly has

K1(B) = B =
⋃

b∈B

{b} =
⋃

b∈B

K1(b).

We demonstrate the theorem by induction. Suppose that it is true for n, that is,
Kn(B) ⊆

⋃

b∈B

Kn(b) and we prove that Kn+1(B) ⊆
⋃

b∈B

Kn+1(b). If z ∈ Kn+1(B),

then there exist q ∈ N, (m′
1, . . . ,m

′
q), σ ∈ Sq such that

z ∈
q∑

i=1

m′
i and

q∑

i=1

m′
i ∩Kn(B) 6= ∅,
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by the hypothesis induction
q∑

i=1

m′
i∩ (

⋃

b∈B

Kn(b)) 6= ∅, hence there exists b′ ∈ B such

that
q∑

i=1

m′
i ∩ Kn(b′) 6= ∅. Since z ∈

q∑

i=1

m′
i one gets z ∈ Kn+1(b′) and so one has

prove Kn+1(B) ⊆
⋃

b∈B

Kn+1(b). Therefore, CM (B) ⊆
⋃

b∈B

CM (b). ¤

Corollary 2.15. If A is a complete part of M, then for every B ∈ P ∗(M), A +
B, B + A are complete parts of M.

Proof. We have: CM (A + B) = A + B + H(M) = A + H(M) + B = CM (A) + B =
A + B. ¤

Corollary 2.16. Let A ∈ P ∗(M). Then, A is a complete part of M if and only if
A + H(M) = A.

Proof. We have CM (A) = A + H(M) = A. ¤

Corollary 2.17. If A ∈ P ∗(M), then H(M) + A = A + H(M) = CM (A).

3. ω∗n-Complete (R,S)-hyper Bi-modules

In [3], Davvaz and Anvariyeh studied θ-part and θ-closure of hypermodules. Also,
see [4, 5].

Definition 3.1. An (R, S)-hyper bi-module M is said to be ω∗n-complete (R,S)-
hyper bi-module if there exists n ∈ N ∪ {0}, and n is the smallest integer such that
ω∗n = ω∗ and ω∗n 6= ω∗n−1.

Lemma 3.2. An (R, S)-hyper bi-module M is ω∗0-complete if and only if M is an
(R, S)-bi-module.

Proof. Suppose that M is an ω∗0-complete (R, S)-hyper bi-module. Then ω∗0 = ω∗,
and hence ω2 ⊆ ω0 and ω1 ⊆ ω0. Now, for every x ∈ m1 + m2 and y ∈ m2 + m1, we
have xω2y, so x = y. Also, for every x, y ∈ r ·m, or x, y ∈ m · s, we have xω1y, so
x = y. Thus, we conclude that m1 + m2 = m2 + m1, r ·m and m · s are singleton.
Therefore, we conclude that M is an (R, S)-bi-module.
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Conversely, if M is an (R, S)-bi-module, then
n∑

i=1

m′
i is singleton and |

n∑

i=1

m′
i| = 1.

By the definition, xωny if and only if x =
n∑

i=1

m′
i, y =

n∑

i=1

m′
i, thus x = y and

xω0y. ¤

Corollary 3.3. If M is an ω∗n-complete (R, S)-hyper bi-module, then M/ω∗n is an
(R/Γ∗R, S/Γ∗S)-bi-module.

Proposition 3.4. Every finite (R, S)-hyper bi-module is ω∗n-complete, for some n.

Proof. Since M is finite, it follows that the succession ω∗1 ⊆ ω∗2 ⊆ . . . is stationary.
Thus, there exists n ∈ N such that ω∗n = ω∗ and ω∗n 6= ω∗n−1. ¤

Let M be an (R,S)-hyper bi-module and π : M → M/ω∗ be the canonical
projection. We set H(M) := π−1(0M/ω∗).

Theorem 3.5. For every non-empty subset A of an (R, S)-hyper bi-module M, we
have

(1) π−1(π(A)) = H(M) + A = A + H(M).
(2) If A is a complete part of M, then π−1(π(A)) = A.

Proof. (1) For every x ∈ H(M)+A, there exists a pair (a, b) ∈ H(M)×A such that
x ∈ a + b, so π(x) = π(a)⊗ π(b) = 0M/ω∗ ⊗ π(b) = π(b). Therefore x ∈ π−1(π(b)) ⊆
π−1(π(A)).

Conversely, for every x ∈ π−1(π(A)), an element b ∈ H exists such that π(x) =
π(b). By the reproducibility, there is a ∈ M such that x ∈ a + b, and so π(b) =
π(x) = π(a) ⊗ π(b). This implies that π(a) = 0M/ω∗ and a ∈ π−1(0M/ω∗) = H(M).
Therefore, we have x ∈ a+b ⊆ H(M)+A. This shows that π−1(π(A)) = H(M)+A.

In the same way, we can prove that π−1(π(A)) = A + H(M).
(2) It is obvious that A ⊆ π−1(π(A)). Moreover, if x ∈ π−1(π(A)), then there

exists an element b ∈ A such that π(x) = π(b). Since A is a complete part, it follows
that x ∈ ω∗(x) = ω∗(b) ⊆ A and therefore π−1(π(A)) ⊆ A. ¤

Theorem 3.6. We have

(1) If for every (v, w) ∈ H(M)2, vωnw, then ω = ωn+1

(2) If for every (v, w) ∈ H(M)2, vω∗nw, then ω = ω∗n+1.
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Proof. (1) If xωy, since H(M) + M = M + H(M) = M , then there exists (v, w) ∈
H(M)2 such that y ∈ x+v and y ∈ x+w. By hypothesis vωnw. Now, using Lemma
2.2, we have (x + v) ωn+1 (x + w), whence xωn+1y, and so ω ⊆ ωn+1.

(2) The result follows from (1) and Lemma 2.2. ¤

Corollary 3.7. If vω∗nw, for every (v, w) ∈ H(M)2, and there exists (u′, w′) ∈
H(M)2 such that (u′, w′) /∈ ω∗n−1, then M is ω∗n-complete or ω∗n+1-complete.

4. Complete (R, S)-hyper Bi-modules

In this section, we present an important class of (R, S)-hyper bi-module: complete
(R, S)-hyper bi-modules. We investigate some interesting properties of this class of
(R, S)-hyper bi-module, for instance we show that any complete (R,S)-hyper bi-
module has at least an identity and any element has an inverse.

If M is an (R, S)-hyper bi-module and A is a non-empty subset of M, then we
recall the complete closure of A by C(A).

Theorem 4.1. Let M be an (R, S)-hyper bi-module. The following conditions are
equivalent

(1) for all n ≥ 1, m′
1, . . . , m

′
n and for all a ∈

n∑

i=1

m′
i, C(a) =

n∑

i=1

m′
i,

(2) for all m′
1, . . . , m

′
n, C

( n∑

i=1

m′
i

)
=

n∑

i=1

m′
i,

Proof. (1 ⇒ 2): We have C
( n∑

i=1

m′
i

)
=

⋃

a∈
n∑

i=1

m′
i

C(a) =
n∑

i=1

m′
i.

(2 ⇒ 1): From a ∈
n∑

i=1

m′
i, we obtain C(a) ⊆ C(

n∑

i=1

m′
i) =

n∑

i=1

m′
i. This means

that C(a) ∩
n∑

i=1

m′
i 6= ∅, whence

n∑

i=1

m′
i ⊆ C(a). Therefore, C(a) =

n∑

i=1

m′
i. ¤

Definition 4.2. An (R,S)-hyper bi-module is complete if it satisfies one of the
above equivalent conditions.
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Example 7. Suppose that R = {x, y}. Then (R, +, ·) is a hyperring, where

+ x y
x x y
y y x

· x y
x R R
y R R

If we consider R as a (R,R)-hyper bi-module, then it is easy to check that the
condition (2) of Theorem 4.1 is satisfied. Therefore, R is complete.

Corollary 4.3. If M is a complete (R, S)-hyper bi-module, then either there exist

m′
1, . . . , m

′
n such that ω∗(x) =

n∑

i=1

m′
i.

Theorem 4.4. If M is a complete (R, S)-hyper bi-module, then

(1) H(M) = {e ∈ M : ∀x ∈ M, x ∈ x + e ∩ e + x}, which means that H is the
set of two-sided identities of H.

(2) (M, +) has at least an identity and any element has an inverse and reversible

Proof. (1) If u ∈ H(M), then for all m ∈ M, we have m ∈ C(m) = m + H(M) =
m + u. Similarly we have mu + m, which means that u is a two-sided identity of M .

Conversely, any two-sided identity u of M is an element of H(M), since π(u) = 0.

(2) Let a, b, c be elements of M and e be a two-sided identity, such that e ∈
b + a∩ a + c. Then, b + a = H(M) = a + c and a + b ⊆ a + b + c ⊆ a + H(M) + c =
H(M) + a + c = H(M), hence a + b = H(M), so b is an inverse of a. Moreover,
if a ∈ u + v, then H(M) = b + a ⊆ b + u + v, so for any inverse v′ of v, we have
v′ ∈ H(M) + v′ ⊆ b + uvv′ = b + u + H(M) = b + u. Similarly, from here we obtain
u′ ∈ v + b, and so u′ + a ⊆ v + b + a = C(v), whence v ⊆ C(v) = u′ + a. In a similar
way, we obtain uav′. ¤

Definition 4.5. An (R, S)-hyper bi-module is called flat if for all subhyper bi-
module K of M, we have H(K) = H(M) ∩K.

Example 8. Let R = {0, 1, 2, 3} be a set together with the hyperoperation + and
the binary operation · defined as follows:

+ 0 1 2 3
0 0 1 2 3
1 1 0 2 3
2 2 2 {0, 2, 3} {2, 3}
3 3 3 {2, 3} {0, 1, 2}
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and a · b = 0 for all a, b ∈ R. Then (R, +, ·) is a hyperring. According to Example 1,
R is an (R,R)-hyper bi-module. Clearly, {0}, {0, 1} and R are subhyper bi-modules
of R. Since H({0}) = {0}, H({0, 1}) = {0} and H(R) = {0}, we conclude that

H({0}) = H(R) ∩ {0},
H({0, 1}) = H(R) ∩ {0, 1},
H(R) = H(R) ∩R.

This means that R is a flat (R, R)-hyper bi-module.

Theorem 4.6. Any complete (R, S)-hyper bi-module is flat.

Proof. Let M be a complete (R, S)-hyper bi-module and suppose that K is a sub-
hyper bi-module M . We have

H(M) ∩K = {e ∈ M : ∀x ∈ M, x ∈ x + e ∩ e + x} ∩K
= {e ∈ K : ∀x ∈ M, x ∈ x + e ∩ e + x} ⊆ H(K).

Moreover, we have

y ∈ CK(x) ⇒ yω∗Kx ⇒ yω∗Mx ⇒ y ∈ CM (x),

which means that CK(x) ⊆ CM (x). Clearly, H(M) ∩K 6= ∅. If x ∈ H(M) ∩K ⊆
H(K), then CK(x) = H(K), CM (x) = H(M). Hence H(K) ⊆ H(M) whence
H(K) ⊆ H(M) ∩K. Therefore, we have H(K) = H(M) ∩K. ¤

Corollary 4.7. If K is a subhyper bi-module of a complete (R, S)-hyper bi-module
M , then H(K) = H(M).

Proof. Set x ∈ H(M)∩K. We have H(M) = C(x+x) = x+x ⊆ H(M)∩K, whence
H(M) ⊆ H(M)∩K, then we apply the above theorem. Hence, H(K) = H(M). ¤

Theorem 4.8. Let M and N be two complete (R, S)-hyper bi-modules and f : M →
N be a good homomorphism. Then we have f(H(M)) = H(N).

Proof. Let x ∈ H(M). Then x + x = H(M), whence f(x) + f(x) = f(H(M)). On
the other hand, f(x) is an identity of N, since x is an identity of M , which means
that f(x) ∈ H(N). Therefore, H(N) = f(x) + f(x) = f(H(M)). ¤

5. Heart of (R,S)-hyperbimodules

In [8], Corsini and Leoreanu investigated the heart of hypergroups. In [1] and
[2], Anvariyeh and Davvaz studied the characterizations of hearts of hypermodules,
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and established a few results concerning the sequence of heart. In this section, we
examine and study the heart of (R, S)-hyper modules.

Theorem 5.1. Let M be an (R, S)-hyper bi-module and B the union of summations

of finite numbers of
n∑

i=1

m′
i, containing at least one right and at least one left identity

and be scalar multiplicatively closed. Then B = H(M).

Proof. We set El(Er) the set of left (right) identities and T = {P ∈ B | P ∩ El 6=
∅, P ∩Er 6= ∅}. Furthermore, for every x ∈ M, we denote with il(x)(ir(x)) the set of
left (right) inverses of x. The first, we prove that for every a ∈ B, il(a) ⊆ B ⊇ ir(a).

Let a ∈ M, then a
n∑

i=1

m′
i = P ∈ T exists such that a ∈ P. If a′ ∈ il(a), e′ ∈ il exists

such that e′ ∈ a′ + a; if a′′ ∈ il(a), e′′ ∈ Er exists such that e′′ ∈ a + a′′. We now

consider the P1 = a′ +
n∑

i=1

m′
i + a + a′′, we have P1 ⊆ T, in fact {e′, e′′} ⊆ e′ + e′′ ⊆

a′ + a + a + a′′ ⊆ P1. Furthermore, {a′, a′′} ⊆ P1; in fact a′ + a + a′′ ⊆ P1 and
a′ ∈ a′ + e′′ ⊆ a′ + a + a′′, also a′′ ∈ e′ + a′′ ⊆ a′ + a + a′′.

Now, we prove that B is a complete part of M. Let a ∈
n∑

i=1

m′
i ∩ B 6= ∅, hence

there exists
t∑

i=1

z′i = P ∈ T such that a ∈ P. Now let e′, e′′ be the left and right

identities, respectively. We have a′, a′′ ∈ M such that e′ ∈ a′ + a, e′′ ∈ a + a′′. Then
n∑

i=1

m′
i ⊆ e′ +

n∑

i=1

m′
i + e′′ ⊆ a′ + a +

n∑

i=1

m′
i + a + a′′ ⊆ a′ + P +

n∑

i=1

m′
i + P + a′′ ⊇

a′+a+a+a′′ ⊇ {e′, e′′}, thus a′+P +
n∑

i=1

m′
i+P+a′′ = P1. Therefore

n∑

i=1

m′
i ⊆ P1 ∈ T

and for this reason
n∑

i=1

m′
i ⊆ B.

Let a, b ∈ M, such that a ∈ P, b ∈ Q where P, Q ∈ T. Then a + b ∈ B. Also, for
every (r, s) ∈ R× S, r · a ⊆ B and a · s ⊆ B.

Furthermore, B satisfies the conditions of reproducibility. Since M is an (R, S)-
hyper bi-module, the properties of M as an (R, S)−hyperbimodule, guarantee that
the hypergroup B is an (R, S)-hyper bi-module. It is clear that B ⊆ H(M). As seen
from the above, it turns out that B is a complete part subhyper bi-module, thus
H(M) ⊆ B. ¤
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We denote
∑

C

(A) the set hypersums A of elements of M such that C(A) = A.

Theorem 5.2. If M is an (R, S)-hyper bi-module and (x′1, . . . , x
′
n) such that

n∑

i=1

x′i ∈
∑

C

(M), then there exists (y′1, . . . , y
′
n) such that

n∑

i=1

x′i +
n∑

i=1

y′i = H(M).

Proof. We set x′i =
ni∑

j=1

( kij∏

k=1

rijk

)
xi. For 1 ≤ t ≤ n, let at be an element of H(M).

Then, there exists yt ∈ M such that at ∈ xt + yt, and hence

nt∑

j=1

ktj∏

k=1

rtjkat ⊆
nt∑

j=1

ktj∏

k=1

rtjkxt +
nt∑

j=1

ktj∏

k=1

rtjkyt = x′t + y′t.

Since H(M) is a complete part, it follows that x′t + y′t ⊆ H(M). Therefore
n∑

i=1

x′i + y′n = H(M) +
n∑

i=1

x′i + y′n =
n−1∑

i=1

x′i + H(M) + x′n + y′n

=
n−1∑

i=1

x′i + H(M) = H(M) +
n−1∑

i=1

x′i

and so
n∑

i=1

x′i + y′n + y′n−1 = H(M) +
n−2∑

i=1

x′i + x′n−1 + y′n−1 = H(M) +
n−2∑

i=1

x′i.

Going on the same way one arrives to
n∑

i=1

x′i +
n∑

i=1

y′i = H(M) + x′1 + y′1 = H(M).

¤

Lemma 5.3. Let (M, +) be an (R, S)-hyper bi-module, then

(1) M −H(M) is a complete part of M.

(2) If M −H(M) is a hypersum, then H(M) is also a hypersum.

Proof. (1) It is straightforward.
(2) For (1), M − H(M) is a complete part. Now by using Theorem 3.2, the

proof is completed.
¤
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Remark 1. Let M be an (R, S)-hyper bi-module endowed with a complete hyper-
sum. The following implication is satisfied for every A ∈ P ∗(M):

A ∩
n∑

i=1

m′
i = ∅ ⇒ C(A) ∩

n∑

i=1

m′
i = ∅.

Assume that z ∈ C(A) ∩
n∑

i=1

m′
i, then a ∈ A exists such that z ∈ C(a), hence

C(a) = C(z). The hypothesis
n∑

i=1

m′
i = C

( n∑

i=1

m′
i

)
implies

C(z) ⊆
⋃

y∈
n∑

i=1

m′
i

C(y) = C
( n∑

i=1

m′
i

)
=

n∑

i=1

m′
i.

Therefore a ∈ A, a ∈ C(z) ⊆
n∑

i=1

m′
i, where

n∑

i=1

m′
i ∩A 6= ∅ which absurd.

Let (M, +) be an (R, S)-hyper bi-module. Let’s consider the sequence

(∗) M ⊇ H(M) = H1 ⊇ H(H(M))) = H2 ⊇ . . . ⊇ Hk ⊇ Hk+1 ⊇ . . . ⊇ Hn ⊇ . . .

Proposition 5.4. Let M be an (R, S)-hyper bi-module. Then the following condi-
tions are equivalent:

(1) The sequence (∗) is finite;
(2) there is (n, k) ∈ N2, where n > k+1, such that Hn is a complete part of Hk;
3) there is (n, k) ∈ N2 where n > k +1, such that for any (x, y) ∈ (Hk−Hn)×

(Hk −Hn); (x + y) ∩ (Hk −Hn) 6= ∅ implies x + y ⊆ Hk −Hn;
(4) there is (n, k) ∈ N2, where n > k + 1, such that for any Hn is an ωn-

conjugable.

Proof. (1 ⇒ 2) If the sequence (∗) is finite, then there is n ∈ N such that Hn = Hn−1,

hence Hn−2 is a complete part of Hn.

(2 ⇒ 3) If Hn is a complete part of Hk, then Hk −Hn is a complete part of Hk.

(3 ⇒ 4) Ones proves easily that for any s ∈ N, Hs is a closed subhyperbimodule
of M. Moreover, for all a, b ∈ Hk, if {a, b} ⊆ Hk − Hn, we have a + b ⊆ Hn, if
a 6= b and |{a, b} ∩Hn| = 1, we have a + b ⊆ Hk −Hn. Then, we obtain that Hn is
Hk-conjugable.
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(4 ⇒ 1) We know Hn is a complete part subhyperbimodule of Hk. Hence Hk+1 =
H(Hk) ⊆ Hn ⊆ Hk+1 from which Hn = Hk+1. So, we have: Hn+1 = H(Hn) =
H(Hk+1) = Hk+2 ⊇ Hn = Hk+1 ⊇ Hk+2. Therefore, Hn = Hk+2 = Hn+1. Let
Hn+s = Hk+1. It follows Hn+s+1 = H(Hn+s) = Hk+1 = Hk+2 = Hk+1. Then, for
any m such that m ≥ n, we have H(M) = Hn. ¤

Theorem 5.5. Let (M, +) be an (R, S)-hyper bi-module such that the sequence (∗)
is finite, and let N be a complete part subhyper bi-module of M. Then there is p ∈ N
such that Hp+1(N) = Hp+1(M).

Proof. Let’s remark that H(N) is a subhyper bi-module of H(M). Indeed, for any
a ∈ H(K), there is e ∈ N such that a ∈ a + e, it’s clear that a ∈ ωK(e) ⊆ ωM (e) =
H(M). Moreover, since N is a complete part subhyper bi-module of M, we have
H(M) ⊆ N. Then H1(N) ⊆ H1(M) ⊆ N. For any s ≥ 1, from Hs(N) ⊆ Hs(M) ⊆
Hs−1(N), one obtains Hs+1(N) ⊆ Hs+1(M) ⊆ Hs(N), and hence N ⊇ H1(M) ⊇
H1(N) ⊇ H2(M) ⊇ H2(N) ⊇ . . . .

By Theorem 5.4, there is (n, p) ∈ N × N, where n > p + 1, such that Hn(M) =
Hp+1(M), therefore Hp+1(M) = Hp+1(N). ¤

Remark 2. If N1, N2 are subhyperbimodules of M, then

H(N1 ∩N2) ≤ H(N1) ∩H(N2).

Proposition 5.6. If N1, N2 ≤ M, where M has a finite sequence (∗), then there
exists p ∈ N, such that Hp+1(N1 ∩N2) = Hp+1(H(N1) ∩H(N2)).

Proof. Let’s consider M := N1 ∩ N2 and N := H(N1) ∩H(N2). Then N is a sub-
hyperbimodule, complete part of M. (We can verify this using the definition of a
complete part.) Now, we can use the proof of Theorem 5.5. ¤

Also, we can give a relation for (R,S)-subhyper bi-module of M :

∃p ∈ N, Hp+1(N1 ∩N2 ∩ . . . ∩Nm) = Hp+1(H(N1) ∩H(N2) ∩ . . . ∩H(Nm)).

Remark 3. If N1, N2 ≤ M, then

H(N1) ⊆ N1 ∩ H(〈N1 ∪N2〉).

Generally, we have not equality. Let M1 and M2 be two (R,S)-hyper bi-modules. Let
m1, n1 arbitrary in M1 and m2, n2 arbitrary in M2. Let’s define on M = M1∪M2∪{a}
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(a /∈ M1 ∪M2) with the following hyperoperations:

+′ m1 a m2

n1 n1 + m1 a M
a a M1 M
n2 M M n2 + m2

and for every (r, s) ∈ R× S, x ∈ M1 and y ∈ M2 scalar multiplication

r ·′ x = r ·1 x, r ·′ y = r ·2 y x ·′ s = x ·1 s, y ·′ s = y ·2 s

and r ·′ a = a ·′ s = a. We can easily verify (M, +′) with scalar multiplication ·′ is
an (R, S)-hyper bi-module. We consider subhyper bi-modules N1 = M ∪{a}, N2 =
M2, N1 ∪N2 = M, 〈N1 ∪N2〉 = M, then H(〈N1 ∪N2〉) = M. So

H(N1) = M1 $ N1 ∩H(〈N1 ∪N2〉) = N1 = M1 ∪ {a}.

Theorem 5.7. Let M be an (R, S)-hyper bi-module and N1, N2 be two subhyper bi-
module of M. If for every a ∈ 〈N1∪N2〉− (N1∪N2), there exists (n1, n2) ∈ N1×N2,

such that a ∈ n1 + n2 and if 〈H(N1) ∪ H(N2)〉 is a closed subhyper bi-module of
H(〈N1 ∪N2〉) then 〈H(N1) ∪H(N2)〉 = H(〈N1 ∪N2〉).

Proof. We shall prove that 〈H(N1) ∪ H(N2)〉 is conjugable in 〈N1 ∪ N2〉 as hyper
bi-module. 〈H(N1) ∪H(N2)〉 is closed in 〈N1 ∪N2〉 because, from a ∈ b + x, where
(a, b) ∈ 〈H(N1) ∪ H(N2)〉2 and x ∈ 〈N1 ∪ N2〉, it results (a, b) ∈ (H2〈N1 ∪ N2〉)
and so x ∈ H(〈N1 ∪ N2〉). Using now the condition given in the proposition, x ∈
〈H(N1) ∪H(N2)〉.

As regards an arbitrary element a ∈ 〈N1 ∪N2〉, we have three situation:

a ∈ N1 ⇒ ∃a′ ∈ N1, a + a′ ⊆ H(N1) ⊆ 〈H(N1) ∪H(N2)〉;
a ∈ N2 ⇒ ∃a′ ∈ N2, a + a′ ⊆ H(N2) ⊆ 〈H(N1) ∪H(N2)〉;
a ∈ 〈N1 ∪N2〉 − (N1 ∪N2) ⇒ ∃n1 ∈ N1,∃n2 ∈ N2, a ∈ n1 + n2.

For ni there exists n′i ∈ Ni, such that ni + n′i ∈ Hni , i = 1, 2.

So, a + n′1 + n′2 ⊆ (n′1 + n′2) + (n2 + n′2) ⊆ H(N1)⊕H(N2) ⊆ 〈H(N1) ∪H(N2)〉,
whence for every t ∈ n′1 + n′2, a + t ⊆ 〈H(N1) ∪H(N2)〉. ¤

An (R, S)-hyper bi-module M is called 1−(R, S)-hyper bi-module if H(M) is a
singleton.

Lemma 5.8. If M is a 1-(R,S)-hyper bi-module, then M is an ω∗2-complete (R,S)-
hyper bi-module.
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Proof. Suppose that H(M) = {e}. Then for all m ∈ M, we have m + e = e + m and
so the classes module ω are {e,m}. It follows that ω = ω2 = ω∗2. ¤

Theorem 5.9. Let M be a 1−(R, S)-hyper bi-module and H(M) = {e}. Then

(1) The ω∗-classes are the summations e + a, where a ∈ M.

(2) Every (R, S)-subhyper bi-module of M is complete part.
(3) If {Mi}i∈I is a family of (R,S)-subhyper bi-module of M, then

⋂

i∈I

Mi is an

(R,S)-subhyper bi-module of M.

(4) The direct product of 1−(R, S)-hyper bi-modules is a 1−(R,S)-hyper bi-
module.

Proof. (1) It is straightforward.
(2) If N is a subhyper bi-module of M, we have N ∩W (M) 6= ∅, for this reason

H(M) ⊆ N, hence N = N + H(M) and therefore N is a complete part.
(3) For (2), for every i ∈ I, e ∈ Mi. We set M =

⋂

i∈I

Mi, hence M 6= ∅. Then for

every x, y ∈ M, b ∈ M exist such that y ∈ b + x, but for every i ∈ I, for (2), Mi is a
closed submodule, thus b ∈ Mi. Also, for every r ∈ R,m ∈ M, we have r.m ⊆ M.

(4) Set N =
∏

i∈I

Ni, m′ = (m′
i)i∈I ∈ N, e = (ei)i∈I . We have xωne if and only if

z′1 = (z′1i )i∈I , z′2 = (z′2i )i∈I , . . . , z
′n = (z′ni )i∈I , exists such that x, e ∈

n∑

i=1

z′k, that

is if and only if for each i ∈ I, z′i, ei ∈
n∑

k=1

z′ki . Then z′i =
n∑

k=1

z′ki = ei, from x = e,

for this reason H(M) = {e}. ¤

6. Conclusion

The notion of (R, S)-hyper bi-modules is a generalization of hypermodules and
bimodules. The heart of an (R, S)-hyper bi-module is the neutral element of the
quotient fundamental bi-module. We studied the properties of the heart and com-
plete parts of (R, S)-hyper bi-modules. In particular, we proved that any compact
(R, S)-hyper bi-module has at least one identity element.

For future research, we will study the properties of exact sequences of (R, S)-
hyper bi-modules.
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