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ROBUST Lp-NORM ESTIMATORS OF MULTIVARIATE

LOCATION IN MODELS WITH A BOUNDED VARIANCE

Georgiy L. Shevlyakov and Jae Won Lee

Abstract. The least informative (favorable) distributions, minimizing Fisher in-
formation for a multivariate location parameter, are derived in the parametric class
of the exponential-power spherically symmetric distributions under the following
characterizing restrictions;

(i) a bounded variance,
(ii) a bounded value of a density at the center of symmetry, and
(iii) the intersection of these restrictions.
In the first two cases, (i) and (ii) respectively, the least informative distributions
are the Gaussian and Laplace, respectively. In the latter case (iii) the optimal
solution has three branches, with relatively small variances it is the Gaussian, with
relatively large variances it is the Laplace, and it is the compromise between them
with intermediate variances. The corresponding robust minimax M -estimators of
location are given by the L2-norm, the L1-norm and the Lp-norm methods. The
properties of the proposed estimators and their adaptive versions are studied in
asymptotics and on finite samples by Monte Carlo.

1. Introduction

One of the main approaches to the synthesis of robust procedures is based on the

minimax principle. In this case, in a given class of densities the least informative

(favorable) one, minimizing Fisher information, is determined and the unknown pa-

rameters of a distribution model are estimated by applying the maximum likelihood

method for this density (cf. Huber [4]). Such an approach makes it possible to con-

struct robust statistical procedures which are stable with regard to the departures

from assumptions about an underlying distribution model. The robust minimax

procedures provide a guaranteed level of the estimator’s accuracy (measured by the

supremum of an asymptotic variance) for any density in a given class.
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The properties of minimax estimators essentially depend on the characteristics of

a distribution class. Hence it seems rather important for many applications to con-

sider the classes of distributions with available characteristics. Maronna [7] treated

robust M -estimators of multivariate location and scatter, their consistency, asymp-

totical normality and qualitative robustness properties. Huber [4] considered the

least informative distributions in the spherically symmetric ε-contaminated Gauss-

ian models.

In this paper, we obtain the least informative distributions and the correspond-

ing robust minimax Lp-norm estimators of a multivariate location parameter in the

parametric classes with a bounded variance, qualitatively other than ε-contaminated

models. The properties of these estimators and their adaptive versions are studied

both asymptotically and on finite samples. As the proposed methods partly gener-

alize the univariate minimax estimators of location, we briefly recall the basic stages

of the Huber minimax approach in this case.

Let x1, · · ·, xn be independent random variables with common density f(x − θ)

in a convex class F . Then the M -estimator θ̂ of a location parameter is defined by

Huber [4] as a zero of
∑n

1 ψ(xi − ·) with a suitable score function ψ. The minimax

approach implies the determination of the least informative density f ∗ minimizing

Fisher information I(f) in the class F : f ∗ = arg minf∈F I(f), I(f) =
∫

(f ′/f)2f dx,

followed by designing the maximum likelihood estimator (MLE) with the score

function ψ∗ = −f∗′/f∗. Under rather general conditions (for details, see Huber

[3, 4]),
√
n(θ̂ − θ) is asymptotically normally distributed and the asymptotic vari-

ance V (ψ, f) has the saddle point (ψ∗, f∗) with the corresponding minimax property

V (ψ∗, f) ≤ V (ψ∗, f∗) ≤ V (ψ, f∗).

The shape of the least informative density f ∗ and the corresponding score function

ψ∗ depends on the structure of the distribution class F . In the literature (for

example, see Collins & Wiens [2], Huber [3, 4], Sacks & Ylvisaker [8]), there are

many results on the least informative distributions, mainly in the ε-contaminated

neighborhoods of a given distribution. The distribution classes with a bounded

variance were considered in [5, 6, 9].

In the class of nondegenerate densities F1 = {f : f(0) ≥ 1/(2a) > 0} (cf. Vil’-

chevskiy & Shevlyakov [9]), the least informative density is the Laplace: f ∗(x) =

L(x; 0, a) = (2a)−1 exp (−|x|/a). The optimal score function ψ∗(u) = sgnu gives

the L1-norm estimator: the sample median. Note that the value of the parameter a

characterizes the dispersion of a distribution in the central zone.
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In the class with a bounded variance F2 =
{
f : σ2(f) =

∫
x2f dx ≤ σ2

}
, the

Gaussian density f∗(x) = N(x; 0, σ) = (2π)−1/2σ−1 exp(−x2/(2σ2)) is optimal with

the score function ψ∗(u) = u and the L2-norm estimator; the sample mean (cf.

Kagan, Linnik & Rao [5]).

In the intersection of these classes, the least informative distribution has three

branches (cf. Vil’chevskiy & Shevlyakov [9]);

(i) with relatively large variances — it is the Laplace,

(ii) with relatively small variances — it is the Gaussian, and

(iii) with the intermediate zone — it is described by the Weber-Hermite functions

or the functions of the parabolic cylinder.

The corresponding estimators are the sample median, sample mean and compromise

between them, respectively. The latter can be efficiently approximated by the Lp-

norm estimators with 1 < p < 2 (cf. Vil’chevskiy & Shevlyakov [9]). Below, these

results are extended on the multivariate case.

2. Problem Statement and Main Result

Let x1, · · ·, xn be a sample from an m-variate spherically symmetric density

f(x − θ) = f(|x − θ|), x, θ ∈ R
m,

with f belonging to the parametric class of exponential-power distributions

Fq =

{
f : fq(r;β) =

qΓ(m/2)

2πm/2βmΓ(m/q)
exp

(
− rq

βq

)}
, (2.1)

where q ≥ 1 and

r = |x − θ| =




m∑

j=1

(xj − θj)
2




1/2

and β is a scale parameter.

The Lp-norm estimator of a location parameter θ = (θ1, · · ·, θm) is defined as

θ̂Lp = arg min
θ

n∑

i=1

rp
i , p ≥ 1, ri =




m∑

j=1

(xij − θj)
2




1/2

. (2.2)

Note that we use the Lp-norm estimators as they are maximum likelihood esti-

mators of location for densities (2.1) when p = q.
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We shall now obtain the minimax variance Lp-norm estimators of multivariate

location in the class Fq. In the general nonparameteric case, Huber [4] showed that

the minimax variance estimation problem is reduced to the variational problem of

minimizing Fisher information for multivariate location

f∗(r) = arg min
f∈F

∫ ∞

0

[
f ′(r)

f(r)

]2

f(r) rm−1 dr. (2.3)

From spherical symmetry, it follows that the saddle point (p∗, q∗) of the covariance

matrix V(p, q) of the Lp-norm estimator θ̂Lp

V(p∗, q) ≤ V(p∗, q∗) = V(q∗, q∗) = I−1(q∗) ,

where I is the Fisher information matrix, is determined from the solution of the

variational problem

f∗(r) = arg min
f∈F

∫ ∞

0

[
f ′(r)

f(r)

]2

f(r) rm−1dr .

Hence, in the parametric class Fq, problem (2.3) takes the form of the simple para-

metric minimization

(q∗, β∗) = arg min
q,β

q2Γ
(

m−2
q + 2

)

β2Γ(m/q)
. (2.4)

Using additional restrictions put on densities (2.1), we now obtain the multivariate

analogues of the univariate least informative densities reviewed in Section 1.

Proposition 1. In the class of nondegenerate densities

F1q = {fq : fq(0;β) ≥ 1/(2am) > 0, q ≥ 1} , (2.5)

the least informative distribution is the multivariate analogue of the Laplace

f∗1 (r) = L(r;β∗) = (2am)−1 exp (−r/β∗) , (2.6)

where

β∗ =
a

[2(m−1)/m π(m−1)/(2m) Γ1/m(m+1
2 )]

.

Proof. Minimization problem (2.4) with the side condition (2.5) of the inequality

type can be rewritten as follows; first, minimize Fisher information (2.4) subject to

the side condition of the equality type fq(0;β) = 1/(2am
1 ); secondly, minimize (2.4)

by the auxiliary parameter a1 subject to a1 ≤ a.
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The first problem is directly solved by eliminating the parameter β from the

equation fq(0;β) = 1/(2am
1 ) and substituting it into the expression for Fisher infor-

mation. It can be shown that dI/dq > 0, therefore we have q∗ = 1, and the following

minimization by a1 implies a∗1 = a. �

Proposition 2. In the class with bounded variances

F2q =

{
fq : σ2

k(fq) =

∫
· · ·

∫
x2

kfq(r) dx1 · · · dxm ≤ σ2, k = 1, · · ·, m
}
, (2.7)

the least informative density is the Gaussian

f∗2 (r) = g(r;σ) =
1

(2πσ)−m/2
exp

(
− r2

2σ2

)
. (2.8)

Proof. This assertion also can be obtained by using the above approach, but it

directly follows from the general result of Luneva [6]; the multivariate Gaussian

density g(x; θ,V) is the least informative in the class of multivariate distributions

with a bounded covariance matrix, V(f) ≤ V. �

Theorem 2.1. In the intersection of the above two classes of distribution

F12q =
{
fq : f(0;β) ≥ 1/(2am) > 0, σ2

k(fq) ≤ σ2, k = 1, · · ·, m
}
,

the least informative density is of the form

f∗q (r) =





g(r;σ), for σ2/a2 ≤ φ1(m),

fα∗(r;β∗), for φ1(m) < σ2/a2 ≤ φ2(m),

L(r;β∗), for σ2/a2 > φ2(m),

(2.9)

where

φ1(m) =
22/m

2π
, φ2(m) =

m+ 1

(4π)(m−1)/m Γ2/m(m+1
2 )

,

the parameters α∗ (1 < α∗ < 2) and β∗ are determined from the equations

σ

a
=

(α∗)1/mΓ1/m(m/2)Γ1/2(m+2
α∗

)√
πmΓ1/2(m/α∗)

, β∗ = m1/2 σ Γ1/2(m/α∗)Γ1/2

(
m+ 2

α∗

)
.

Proof. The three branches of solution (2.9) appear due to the degree in which the

restrictions are taken into account. In the first domain σ2/a2 ≤ φ1(m), it is just the

restriction on a variance that matters: σ2
k(f̃2) = σ2, k = 1, · · ·, m; the restriction on

the value of a density at the center of symmetry has the form of the strict inequality
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f2(0) > 1/(2am). In the third domain σ2/a2 > φ2(m), the restriction on a density

value is essential:

f1(0) = 1/(2am), σ2
k(f1) < σ2, k = 1, · · ·, m.

In the middle domain, the both restrictions are the equalities

fα∗(0) = 1/(2am), σ2
k(fα∗) = σ2, k = 1, · · ·, m,

thus they determine the unknown parameters α and β. �

Corollary 2.1. The minimax variance estimator of location is the multivariate

Lp-norm estimator with p = α∗. Thus, in the first domain with relatively small

variances, the L2-norm method is optimal; in the third domain with relatively large

variances, the L1-norm method is optimal; in the middle domain, the Lp-norm es-

timators with 1 < p < 2 are the best.

It can be seen, from Theorem 2.1, that the optimal value of q∗ is determined

independently on β∗ because of the scale equivariancy of L2-norm estimators. The

thresholds of switching of the minimax algorithm from the L1-norm estimator to the

Lp-norm with 1 < p < 2, and to the L2-norm estimator, are given by the functions

φ1(m) and φ2(m). The values of these thresholds are displayed in Table 1.

Table 1. The values of the switching thresholds of the multivariate
Lp-norm estimators

m 1 2 3 4 5 ∞
φ1(m) 2/π 1/π 1/(21/3π) 1/(21/2π) 1/(22/3π) 1/(2π)

φ2(m) 2 3/π (2/π)2/3 5/(61/2π) 3/(2π4/5) e/(2π)

It can be seen from Table 1 that, first, the asymptotic values of the thresholds are

reached rather fast as m → ∞, and second, with increasing m these values become

smaller in approximately three times than m = 1.

We now consider the behavior of the minimax multivariate Lp-norm estimators

under the conventional ε-contaminated Gaussian distributions:

f(r) = (1 − ε)g(r;
√

2) + εg(r; k
√

2), 0 ≤ ε < 1, k > 1 (2.10)

where

g(r; k
√

2) =
1

(2π)m/2km
exp

(
− r2

2k2

)
, k > 1.
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It suffices to check the robust L1-branch of the minimax solution. Under densities

(2.10), the asymptotic efficiency of the L1-norm estimator relative to the L2-norm

estimator is given by

ARE(L1, L2) = φ(m)(1 − ε+ εk2)(1 − ε+ ε/k)−2,

where

φ(m) =
(m− 1)2Γ2(m−1

2 )

2mΓ2(m/2)
, m ≥ 2.

Now we display several values of φ(m):

φ(1) = 2/π, φ(2) = π/4, φ(3) = 8/(3π), φ(∞) = 1.

For example, under the Gaussian distribution with k = 1 or ε = 0 the superiority

of the L2-estimator vanishes fast as m→ ∞. In other words, all estimators become

equally bad with high dimensionality.

3. Adaptive robust procedure

Designing robust estimators, we have supposed the availability of the information

about the characteristics of a distribution class. However, in real-life problems, these

characteristics are usually unknown and can be determined while data processing.

In applications, the approximate value of the upper bound of a variance can be

obtained from the restrictions of a physical, technical or any other data measuring

procedure. A statistician may estimate this value analyzing the extreme values in

the data or using the upper confident bounds for a variance. We propose another

way in an adaptive procedure.

As observations are coming in successively, it is feasible to develop estimators

that are capable of adapting to the ever increasing volume of data and correcting

the characteristics of a class F for improving the accuracy of estimation. With not

large samples, such an approach is heuristic and the simplest for the examination

by Monte Carlo technique.

Consider the following adaptive algorithm for robust estimation of a multivariate

location parameter, called ARML-estimator.

(i) Choose the initial L1-norm estimate for θ:

θ̂L1
= arg min

θ

n∑

i=1

ri, p ≥ 1, ri =




m∑

j=1

(xij − θj)
2




1/2

.



88 Georgiy L. Shevlyakov and Jae Won Lee

(ii) Evaluate the residuals:

êi = xi − θ̂L1
, i = 1, · · ·, n.

(iii) Evaluate the estimates of the characteristics σ2 and a of the class F12q:

σ̂
2

=
1

nm

n∑

i=1

r̂2i , ri = |ei|, i = 1, · · ·, n; â =
π1/2(n+ 1)1/mr̂(1)

Γ1/m(m/2)
,

where r(1) is the minimal order statistic of the sample r1, · · ·, rn.

(iv) Use the robust minimax Lp-norm estimator (p = q∗) of Section 2 with the

estimates â and σ̂
2

as the characteristics of the class F12q.

Then we obtain the estimate â from the following relations:

P (r ≤ R) = F (R), F (R) = 2πm/2(Γ(m/2))−1

∫ R

0
f(t)tm−1 dt,

F̂ (r(1)) = 2πm/2(mΓ(m/2))−1 rm
(1) f̂(0),

F̂ (r(1)) = 1/(n+ 1), f̂(0) = 1/(2âm). (3.1)

Under the ε-contaminated bivariate Gaussian distributions (2.10), the behavior

of the ARML-algorithm was studied by Monte Carlo on samples n = 20 and n =

100. The number of replications was 1000. The L1-, L2- and ML-estimators were

also evaluated. The relative efficiency of estimators was defined as the ratio of the

absolute values of the determinants of their sample covariance matrices. The results

of simulation are presented in Table 2. The mean values of the optimal parameter

p = α∗ used in the ARML-estimate are displayed in the third line of Table 2 as well.

Table 2. The relative efficiency of the ARML, L2- and L1-norm es-
timators under contamination: ε = 0.1

n = 20 n = 100

k 1 2 3 4 5 k 1 2 3 4 5

ARML 0.80 0.84 0.89 0.92 0.95 ARML 0.96 0.94 0.90 0.90 0.93

p 1.70 1.58 1.42 1.23 1.13 p 1.92 1.70 1.40 1.15 1.05

L2 1.00 0.92 0.67 0.40 0.30 L2 1.00 0.94 0.70 0.42 0.31

L1 0.70 0.76 0.83 0.88 0.93 L1 0.73 0.78 0.86 0.89 0.93

The ARML-estimator proved to be better than the L1- and L2-norm estimators

both on small and large samples, especially under heavy contamination.
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On small samples, the ARML-estimator is similar to the L1-norm estimator. The

same effect was observed in the univariate case for the adaptive robust estimators of

a location parameter (cf. Vil’chevskiy & Shevlyakov [9]), and it is explained by the

positive bias of the sample distribution of the switching threshold statistic σ̂
2
/â2 on

small samples.

4. Concluding remarks

Regarding the robustness properties of the obtained parametric solution (2.9), we

now consider the general nonparametric case of spherically symmetric distributions.

For variational problem (2.3), the Euler equation is given by

u′′ + [(m− 1)/r]u′ − λu = 0, (4.1)

where u(r) =
√
f(r), λ is a Lagrange multiplier corresponding to the condition of

norming (cf. Huber [4]).

Setting w(r) = rνu(r), ν = m/2 − 1 and z =
√
|λ| r, from (4.1) we obtain the

Bessel equation

z2w′′(z) + zw′(z) − (z2sgnλ+ ν2)w(z) = 0.

Its solutions can be written as

w(z) =

{
Jν(z) or Nν(z), for λ < 0,

Iν(z) or Kν(z), for λ ≥ 0,
(4.2)

where Jν(z) and Nν(z) are the Bessel and Neyman functions of the ν-th order, Iν(z)

and Kν(z) are the modified Bessel and Macdonald functions (cf. Abramowitz &

Stegun [1]). Using (4.2), we can describe the multivariate analogs of the univariate

least informative densities, that is, the first is the Bokk’s generalization for Huber’s

least informative density under ε-contaminated distribution and the second is the

generalization of the cosine-type density minimizing Fisher information over the

class of finite distributions.

As the Gaussian distribution is optimal both in the parametric and nonparametric

classes with a bounded variance, it is sufficient to consider only the nonparametric

class of the nondegenerate spherically symmetric densities F = {f : f(0) ≥ 1/(2am)

> 0}. As the robustness properties of any minimax variance estimation procedure

are mainly defined by the shape of the tails of the least informative density, now

we obtain their asymptotic structure. From the above it follows that these tails
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should be as Ar−2νK2
ν (Br) for sufficiently large values of r, where A and B are

some constants. Hence the asymptotic behavior of these tails can be described by

f∗(r) ∼ r1−m exp(−Cr) as r → ∞ for some positive constant C. Thus the tails

of the least informative distribution in the nonparametric class of nondegenerate

distributions are shorter than for its parametric analogue (2.6), the Laplace density

L(r) ∼ exp(−Dr) where D is also constant. So, we can state that the L1-norm

estimator provides the resistance to outliers in the general nonparametric family of

distributions but certainly with some loss of efficiency.
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