J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. Volume 11, Number 1 (February 2004), Pages 15–22

ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENCE EQUATION $x_{n+1} = \alpha + \beta x_{n-1}^p / x_n^p$

ZHAOSHUANG LIU AND ZHENGUO ZHANG

ABSTRACT. In this paper, we investigate asymptotic stability, oscillation, asymptotic behavior and existence of the period-2 solutions for difference equation

$$x_{n+1} = \alpha + \beta x_{n-1}^p / x_n^p$$

where $\alpha \ge 0, \beta > 0, |p| \ge 1$, and the initial conditions x_{-1} and x_0 are arbitrary positive real numbers.

1. INTRODUCTION

Consider the following recursive equation

$$x_{n+1} = \alpha + \beta \frac{x_{n-1}^p}{x_n^p} \tag{1.1}$$

where $\alpha \ge 0, \beta > 0, |p| \ge 1$ and the initial conditions x_{-1} and x_0 are arbitrary positive real numbers.

Recently, there has been an increasing interest in the study of the recursive sequences Amleh, Grove, Georgiou & Ladas [1], Gibbons, Kulenovic & Ladas [2], Kocić, Ladas & Rodrigues [3] and Kosmala, Kulenovic, Ladas & Teixeira [4]. In this paper, we study asymptotic stability, oscillation, asymptotic behavior and existence of the period-2 solutions for the difference equations (1.1).

We need the following definitions.

Definition 1. The equilibrium point \overline{x} of the equation

$$x_{n+1} = F(x_n, x_{n-1}, \dots, x_{n-k}), \quad n = 0, 1, \dots$$

2000 Mathematics Subject Classification. 39A11.

Key words and phrases. difference equation, stability, oscillation, period-2 solution. Research are supported by the Natural Science Foundation of Hebei Province.

© 2004 Korea Soc. Math. Educ.

Received by the editors April 4, 2003 and, in revised form, January 11, 2004.

is the point that satisfies the condition:

 $\overline{x} = F(\overline{x}, \overline{x}, \dots, \overline{x}).$

Definition 2. A positive semi-cycle of $\{x_n\}$ of equation (1.1) consists of "string" of terms $\{x_l, x_{l+1}, \ldots, x_m\}$ all greater than or equal to the \overline{x} , with $l \ge -1$ and $m \le \infty$ and such that

either
$$l = -1$$
 or $l > -1$ and $x_{l-1} < \overline{x}$,

and

either
$$m = \infty$$
 or $m < \infty$ and $x_{m+1} < \overline{x}$

A negative semi-cycle of $\{x_n\}$ of equation (1.1) consists of a "string" of terms $\{x_l, x_{l+1}, \ldots, x_m\}$ all less than the \overline{x} , with $l \ge -1$ and $m \le \infty$ and such that

either
$$l = -1$$
 or $l > -1$ and $x_{l-1} \ge \overline{x}$

and

either
$$m = \infty$$
 or $m < \infty$ and $x_{m+1} \ge \overline{x}$

Definition 3. A solution $\{x_n\}$ of equation (1.1) is called *oscillatory* if $x_n - \bar{x}$ is neither eventually positive nor eventually negative. Otherwise, it is called *nonoscillatory*.

2. MAIN RESULTS

First, we discuss asymptotic stability for equation (1.1).

Theorem 1. *f* we assume $p \ge 1$, then following statements are true:

- (1) The equilibrium point $\overline{x} = \alpha + \beta$ of equation (1.1) is locally asymptotically stable if $\alpha > (2p-1)\beta$.
- (2) The equilibrium point $\overline{x} = \alpha + \beta$ of equation (1.1) is unstable if $0 \leq \alpha < (2p-1)\beta$.

Proof. The linearized equation of the equation (1.1) about the equilibrium point $\overline{x} = \alpha + \beta$ is

$$y_{n+1} + \frac{p\beta}{\alpha+\beta}y_n - \frac{p\beta}{\alpha+\beta}y_{n-1} = 0.$$
(2.1)

The characteristic equation is given by

$$f(\lambda) = \lambda^2 + \frac{p\beta}{\alpha + \beta}\lambda - \frac{p\beta}{\alpha + \beta} = 0.$$
(2.2)

So by Linearized Stability Theorem Gibbons, Kulenovic Ladas [2] and Jury Criterion of Asymptotically Stable Kocić, Ladas & Rodrigues [3] $\overline{x} = \alpha + \beta$ is locally asymptotically stable if

$$f(-1) > 0, \quad f(1) > 0, \quad f(0) < 0$$

i. e.,

$$\alpha > (2p-1)\beta,$$

and the equilibrium point $\overline{x} = \alpha + \beta$ is unstable if $0 \le \alpha < (2p - 1)\beta$.

This completes the proof.

Remark. If $\beta = 1$, we have the same result as in Amleh, Grove, Georgiou & Ladas [1].

Corollary 2. If we assume $p \leq -1$, then following statements are true:

- (1) The equilibrium point $\overline{x} = \alpha + \beta$ of equation (1.1) is locally asymptotically stable if $\alpha > -(p+1)\beta$.
- (2) The equilibrium point $\overline{x} = \alpha + \beta$ of equation (1.1) is unstable if $0 \leq \alpha < -(p+1)\beta$.

The proof is the same method as in Theorem 1.

The following are some results of oscillation and asymptotic behavior for the equation (1.1).

Theorem 3. Assume $p \ge 1$, and let $\{x_n\}$ be a positive solution of equation (1.1) which consists of at least two semi-cycles. Then $\{x_n\}$ is oscillatory. Moreover with the possible exception of the first semi-cycle, every semi-cycle has length 1 and every term of $\{x_n\}$ is strictly greater than α , and with the possible exception of the first two semi-cycles, no term of $\{x_n\}$ is ever equal to $\alpha + \beta$.

Proof. Consider the following two cases.

Case 1. Let $x_{N-1} < \alpha + \beta \leq x_N$ for some $N \geq 0$.

Then

$$x_{N+1} = \alpha + \beta \frac{x_{N-1}^p}{x_N^p} < \alpha + \beta,$$

and

$$x_{N+2} = \alpha + \beta \frac{x_N^p}{x_{N+1}^p} > \alpha + \beta.$$

Thus

$$x_{N+1} < \alpha + \beta < x_{N+2}.$$

Case 2. Let $x_N < \alpha + \beta \le x_{N-1}$ for some $N \ge 0$.

Then

$$x_{N+1} = \alpha + \beta \frac{x_{N-1}^p}{x_N^p} > \alpha + \beta,$$

and

$$x_{N+2} = \alpha + \beta \frac{x_N^p}{x_{N+1}^p} < \alpha + \beta.$$

Thus

$$x_{N+2} < \alpha + \beta < x_{N+1}$$

This completes the proof.

Theorem 4. Suppose p = -1, and let $\{x_n\}$ be a positive solution of equation (1.1). Then $\{x_n\}$ is oscillatory. Moreover, with the possible exception of the first semicycle, the length of every semi-cycle is equal to 2 or 3, and every term of $\{x_n\}$ is strictly greater than α .

Proof. Case 1. Let $x_{N-1} < \alpha + \beta$ and $x_N \le \alpha + \beta$ for some $N \ge 0$.

Then

$$x_{N+1} = \alpha + \beta \frac{x_N}{x_{N-1}} \tag{2.3}$$

from the above equality, we have

$$\frac{x_{N+1}}{x_N} = \frac{\alpha}{x_N} + \frac{\beta}{x_{N-1}} > \frac{\alpha}{\alpha+\beta} + \frac{\beta}{\alpha+\beta} = 1.$$

 $\operatorname{So},$

$$x_{N+1} > x_N,$$

and thus,

$$x_{N+2} = \alpha + \beta \frac{x_{N+1}}{x_N} > \alpha + \beta$$

Case 2. Let $x_{N-1} > \alpha + \beta$ and $x_N \ge \alpha + \beta$ for some $N \ge 0$. Then

$$\frac{x_{N+1}}{x_N} = \frac{\alpha}{x_N} + \frac{\beta}{x_{N-1}} < \frac{\alpha}{\alpha+\beta} + \frac{\beta}{\alpha+\beta} = 1.$$

So,

$$x_{N+1} < x_N$$

and so,

$$x_{N+2} = \alpha + \beta \frac{x_{N+1}}{x_N} < \alpha + \beta.$$

18

Case 3. Let $x_{N-1} < \alpha + \beta$ and $x_N \ge \alpha + \beta$ for some $N \ge 0$. Then $x_{N+1} > \alpha + \beta$; Case 4. Let $x_{N-1} > \alpha + \beta$ and $x_N \le \alpha + \beta$ for some $N \ge 0$. Then $x_{N+1} < \alpha + \beta$. This completes the proof.

Theorem 5. Let $p \ge 1$, $0 \le \alpha < 1 \le \beta$, and $\{x_n\}$ be a solution of equation (1.1) such that

$$0 < x_{-1} \le \beta^{\frac{1}{p}} \quad and \quad x_0 \ge (\frac{\beta^2}{1-\alpha})^{\frac{1}{p}}.$$

Then the following statements are true:

(1) $\lim_{n \to \infty} x_{2n} = \infty.$ (2) $\lim_{n \to \infty} x_{2n+1} = \alpha.$

Proof. Since $0 \le \alpha < \beta$, so $\beta^2 - \alpha^2 < \beta^2$, and thus $\frac{\beta^2}{\beta - \alpha} > \alpha + \beta$. Then

$$x_0^p \ge \frac{\beta^2}{1-\alpha} \ge \frac{\beta^2}{\beta-\alpha} > \alpha + \beta,$$

and we have

$$x_1 = \alpha + \beta \frac{x_{-1}^p}{x_0^p} \le \alpha + \beta \frac{\beta}{x_0^p} \le 1,$$

and

$$x_1 = \alpha + \beta \frac{x_{-1}^p}{x_0^p} > \alpha.$$

Thus

$$x_1 \in (\alpha, 1].$$

Similarly, we have

$$x_{2} = \alpha + \beta \frac{x_{0}^{p}}{x_{1}^{p}} \ge \alpha + \beta x_{0}^{p},$$

$$x_{3} = \alpha + \beta \frac{x_{1}^{p}}{x_{2}^{p}} \le \alpha + \beta \frac{1}{(\alpha + x_{0}^{p})^{p}}$$

$$\le \alpha + \beta \frac{1}{\alpha + x_{0}^{p}} \le \alpha + \frac{\beta^{2}}{x_{0}^{p}} \le 1.$$

Thus

$$x_3 \in (\alpha, 1].$$

Also

$$x_4 = \alpha + \beta \frac{x_2^p}{x_3^p} \ge \alpha + \beta x_2^p \ge \alpha + \beta (\alpha + x_0^p)^p$$
$$\ge \alpha + \beta (\alpha + x_0^p) = (1 + \beta) \alpha + \beta x_0^p.$$

Thus

$$x_4 \ge (1+\beta)\alpha + \beta x_0^p.$$

By induction, we have

$$x_{2n} \ge \alpha \sum_{i=0}^{n-1} \beta^i + \beta^{n-1} x_0^p$$

and

$$\alpha < x_{2n+1} \le 1.$$

Thus

$$\lim_{n \to \infty} x_{2n} = \infty.$$

and

$$\lim_{n \to \infty} x_{2n+1} = \lim_{n \to \infty} \left(\alpha + \beta \frac{x_{2n-1}^p}{x_{2n}^p} \right) = \alpha.$$

This completes the proof.

Finally, we study the existence of the period-2 solutions for equation (1.1).

Theorem 6. Let $p = 1, \alpha > 0$. The following statements are true.

- (1) Equation (1.1) has solutions of prime period 2 if and only if $\alpha = \beta$.
- (2) Assume that $\alpha = \beta$ and $\{x_n\}$ be a solution of equation (1.1). Then x_n is periodic with period 2 if and only if $x_{-1} > \alpha, x_0 = \frac{\alpha x_{-1}}{x_{-1} \alpha}$.

Proof. (i) Let $\{x_n\}$ be a periodic solution of (1.1) with period 2. Then

$$x_{-1} = \alpha + \beta \frac{x_{-1}}{x_0}, \quad x_0 = \alpha + \beta \frac{x_0}{x_{-1}},$$

Since $\alpha > 0, \beta > 0$, from the above equality, it implies $x_{-1} - \alpha \neq 0$ and $x_{-1} - \beta \neq 0$. Thus,

$$x_0 = \frac{\beta x_{-1}}{x_{-1} - \alpha}, \quad x_0 = \frac{\alpha x_{-1}}{x_{-1} - \beta}$$

We have,

$$\frac{\beta x_{-1}}{x_{-1}-\alpha}=\frac{\alpha x_{-1}}{x_{-1}-\beta}$$

Therefore,

$$(\alpha - \beta)x_{-1} - (\alpha^2 - \beta^2) = 0.$$

If $\alpha \neq \beta$, then $x_{-1} = \alpha + \beta$, we have

 $x_0 = \alpha + \beta$, and $x_n = \alpha + \beta$,

which contradicts $\{x_n\}$ is periodic with period 2.

20

If $\alpha = \beta$, for any $x_{-1} > \alpha$, set

$$x_0 = \frac{\alpha x_{-1}}{x_{-1} - \alpha}.$$

Then

$$x_1 = \alpha + \alpha \frac{x_{-1}}{x_0} = \alpha + \alpha \frac{x_{-1}(x_{-1} - \alpha)}{\alpha x_{-1}} = x_{-1}.$$

Similarly, we have $x_2 = x_0$. So $\{x_n\}$ is periodic with period 2.

(ii). From the proof of (i), for any $x_{-1} > \alpha$, set $x_0 = \frac{\alpha x_{-1}}{x_{-1} - \alpha}$, the solution $\{x_n\}$ is periodic with period 2; contrarily, if $\{x_n\}$ is the solution periodic with period 2 of (1.1), we have $x_1 = \alpha + \alpha \frac{x_{-1}}{x_0} = x_{-1}$, so $x_{-1} > \alpha, x_0 = \frac{\alpha x_{-1}}{x_{-1} - \alpha}$.

This completes the proof.

Theorem 7. Suppose p = -1. Then for any $\alpha \ge 0$, $\beta > 0$ equation (1.1) has no solution of prime period 2.

Proof. If not, let $\{x_n\}$ be a solution of (1.1) which is periodic with period 2. From equation (1.1),

we have

$$x_{-1} = \alpha + \beta \frac{x_0}{x_{-1}}, \quad x_0 = \alpha + \beta \frac{x_{-1}}{x_0}.$$

It is evident that $x_{-1} > \alpha, x_0 > \alpha$.

So

$$x_0 = \frac{1}{\beta}(x_{-1}^2 - \alpha x_{-1})$$
 and $x_{-1} = \frac{1}{\beta}(x_0^2 - \alpha x_0)$

and we have

$$x_{-1}^{4} - 2\alpha x_{-1}^{3} + \alpha(\alpha - \beta)x_{-1}^{2} + \beta(\alpha^{2} - \beta^{2})x_{-1} = 0,$$

$$x_{-1}(x_{-1} - \alpha - \beta)\left(x_{-1}^{2} + (\beta - \alpha)x_{-1} + \beta(\beta - \alpha)\right) = 0$$

We obtain

$$x_{-1} = \alpha + \beta,$$

or

$$f(x_{-1}) = x_{-1}^{2} + (\beta - \alpha)x_{-1} + \beta(\beta - \alpha) = 0.$$
(2.4)

If $x_{-1} = \alpha + \beta$, then

$$x_0 = \frac{1}{\beta} \left((\alpha + \beta)^2 - \alpha(\alpha + \beta) \right) = \alpha + \beta.$$

It is easy to see $x_n \equiv \alpha + \beta$, which have a contradiction.

Therefore $f(x_{-1}) = 0$.

(i) When $\alpha = \beta$, from (2.4), we has $x_{-1} = 0$, which contradicts $x_{-1} > \alpha$.

- (ii) When $\alpha < \beta$, $\Delta = -(\beta \alpha)(\alpha + 3\beta) < 0$, equation (2.4) have no real roots.
- (iii) When $\alpha > \beta$, $f(0) = \beta(\beta \alpha) < 0$, $f(\alpha) = \beta^2 > 0$.

Then, since the roots of (2.4) satisfy $x_{-1} < \alpha$, we have a contradiction.

Therefore for any $\alpha \ge 0$, $\beta > 0$, equation (1.1) has no solution of prime period 2. This completes the proof.

References

- 1. A. M. Amleh, E. A. Grove, D. A. Georgiou & G. Ladas: On the recursive sequence $x_{n+1} = \alpha + x_{n-1}/x_n$. J. Math. Anal. Appl. **233** (1999), no. 2, 790–798. MR **2000f:**39002
- 2. C. Gibbons, M. Kulenovic & G. Ladas: On the recursive sequence $x_{n+1} = (\alpha + \beta x_{n-1})/(\gamma + x_n)$. Math. Sci. Res. Hot-Line 4 (2000), no. 2, 1–11. MR 2001a:39044
- V. L. Kocić, G. Ladas & I. Rodrigues: On rational recursive sequences. J. Math. Anal. Appl. 173 (1993), no. 1, 127–157. MR 94b:39003
- 4. W. Kosmala, M. Kulenovic, G. Ladas & C. Teixeira: On the recursive sequence $y_{n+1} = (p + y_{n-1})/(qy_n + y_{n-1})$. J. Math. Anal. Appl. **251** (2000), no. 2, 571–586. MR **2001m:**39047
- V. L. Kocić & G. Ladas: Global behavior of nonlinear difference equations of higher order with applications. Mathematics and its Applications, 256. Kluwer Academic Publishers Group, Dordrecht, 1993.
- Z. G. Zhang & Q. L. Li: Oscillation theorems for second-order advanced functional difference equations. *Comput. Math. Appl.* 36 (1998), no. 6, 11–18. MR 99i:39023

(Z. LIU) COLLEGE OF MATHEMATICS AND INFORMATION SCIENCE, HEBEI NORMAL UNIVERSITY, SHIJIAZHUANG, 050016, P. R. CHINA

(Z. ZHANG) COLLEGE OF MATHEMATICS AND INFORMATION SCIENCE, HEBEI NORMAL UNIVER-SITY, SHIJIAZHUANG, 050016, P. R. CHINA *Email address:* zhaozhao1962@sina.com