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TOTAL LEAST SQUARES FITTING WITH QUADRICS

Helmuth Späth

Abstract. A computational algorithm is developed for fitting given data in the
plane or in 3-space by implicitly defined quadrics. Implicity implies that the type
of the quadric is part of the model and need not be known in advance. Starting
with some estimate for the coefficients of the quadric the method will alternatively
determine the shortest distances from the given points onto the quadric and adapt
the coefficients such as to reduce the sum of those squared distances. Numerical
examples are given.

1. Problem statement

Let be given data points

(pi, qi) or (pi, qi, ri) (i = 1, . . . , m) (1)

in the plane or in space that should be fitted by a quadric

g1(x, y) = a1x
2 + a2y

2 + a3xy + a4x + a5y + a6 = 0 (2)

or

f1(x, y, z) = a1x
2+a2y

2+a3z
2+a4xy+a5xz+a6yz+a7x+a8y+a9z+a10 = 0, (3)

respectively.
If the type of the quadric is known in advance you should better use a parametric

representation of it like

x = A + P cos t, y = B + Q sin t (0 ≤ t < 2π) (4)
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in the case of an ellipse Ahn, Rauh & Recknagel [1], Ahn, Rauh & Warnecke [2]
Gander, Golub & Strebel [4], Späth [11] (P = Q: circle Späth [10]), like

x = A + P cosu sin v, y = B + Q cosu cos v, z = C + R sinu, (5)

−π ≤ u < π, −π

2
≤ v <

π

2
in the case of an ellipsoid Späth [12, 15] (P = Q = R: sphere Späth [13]). These
representations would additionally have to be rotated, i. e., (4) by an unknown
elementary rotation in the x − y-plane and (5) by three unknown rotations in the
x− y, x− z, and y − z planes.

In order to have the same number of unknowns (center, half axes, rotation an-
gle(s)) both in (4) and (2) and in (5) and (3) and because we can multiply (2) and
(3) by some nonzero factor without changing them it turns out that we need some
normalization. Excluding quadrics passing through the origin, we set

a6 = 1 in (2) and a10 = 1 in (3), respectively, (6)

to overcome this. Other normalizations are discussed in some references given in
Späth [12] and in Späth [15] .

Now if the type of the conic is not known in advance you will have to choose
(2) or (3) together with (6). But it is true that in the case of conic sections in the
plane you can also use NURBS of degree two Seufer & Späth [6] containing some
unknown parameter w whose size determines the type of the quadric (2); it is not
clear whether this method could be extended to quadrics in space.

Fitting with (2) or (3) s.t. (6) means to find some vector aaa = (a1, . . . , a5)T or
aaa = (a1, . . . , a9)T , respectively, such that the sum of squared shortest distances from
the given points (1) onto the quadric is (globally) minimized. Any formulae will be
developed only for (3); the equivalent ones for (2) might be got by dropping third
components of vectors, i. e., those containing z and ri, and changing (15).

The computational method to be developed is as follows. In Section 2 we describe
at first how to give an initial (t = 0) estimate aaa(t) for the coefficients in (3) using the
given data. Then in Section 3 we will use NEWTON’s method to determine foot
points (xi, yi, zi) = (xi(aaa(t)), yi(aaa(t)), zi(aaa(t))) (i = 1, . . . , m) on the corresponding
quadric drawing perpendiculars onto that one with aaa = aaa(t). Some heuristic will
always empirically give that foot point with the shortest distance. In Section 4
we discuss how to improve aaa(t) using a damped version of the GAUSS-NEWTON
method to reduce the objective function. Using the improved value aaa(t+1) we start
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again to look for the optimal foot points and so on. Finally in Section 5 we will give
numerical examples and discuss the experiences with the overall method.

2. Starting values

Some starting vector aaa(0) as required may be generated as follows. From the
given data points (pi, qi, ri), i = 1, . . . , m, we calculate

p` = min
i

pi, pu = max
i

pi,

q` = min
i

qi, qu = max
i

qi, (7)

r` = min
i

ri, ru = max
i

ri.

The center of the cube with the eight vertices (p`, q`, r`), (p`, q`, ru), . . . ,
(pu, qu, ru) is given by

pm =
p` + pu

2
, qm =

q` + qu

2
, rm =

r` + ru

2
. (8)

This cube contains all given data points (1). This is also true for a sphere with the
same center (8) and radius

R =
√

(pm − p`)2 + (qm − q`)2 + (rm − r`)2 . (9)

That sphere as starting quadric, however, may have the disadvantage that all per-
pendiculars would start from its interior. Thus we reduce R by some factor γ with
0 < γ < 1 - normally γ = .5 - to get

a
(0)
1 = a

(0)
2 = a

(0)
3 = α,

a
(0)
4 = a

(0)
5 = a

(0)
6 = 0,

a
(0)
7 = −2αpm, a

(0)
8 = −2αqm, a

(0)
9 = −2αrm,

α = 1/(p2
m + q2

m + r2
m − γ2R2), a

(0)
10 = 1.

(10)

These starting values will work in a lot of cases but surely not always.

3. Determining optimal foot points

Assuming aaa = aaa(t) to be available in the t-th iteration (starting with (10) for
t = 0) we consider the problem of finding for some given point (p, q, r) = (pi, qi, ri),
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i = 1, . . . , m, the shortest perpendicular onto the current quadric, i. e., we look for
(x, y, z) = (xi, yi, zi) on the quadric such that

S(x, y, z) =
1
2
[
(x− p)2 + (y − q)2 + (z − r)2

]
(11)

will globally be minimized s.t. to (3) being valid for aaa = aaa(t) and (x, y, z).
S is bounded below and convex. The LAGRANGIAN function is

L(x, y, z, λ) = S(x, y, z)− λf1(x, y, z). (12)

The necessary conditions for some minimum, i. e.,
∂L

∂x
=

∂L

∂y
=

∂L

∂z
= 0 (13)

give in turn

(x− p)− λ (2a1x + a4y + a5z + a7) = 0,

(y − q)− λ (2a2y + a4x + a6z + a8) = 0, (14)

(z − r)− λ (2a3z + a5x + a6y + a9) = 0.

Eliminating λ e. g., from the first equation and putting it into the two other ones
gives

f2(x, y, z)=(y−q)(2a1x+a4y+a5z+a7)−(x−p)(2a2y+a4x+a6z+a8)=0, (15)

f3(x, y, z)=(z−r)(2a1x+a4y+a5z+a7)−(x−p)(2a3z+a5x+a6y+a9) = 0.

Together with f1(x, y, z) = 0 from (3) we have three nonlinear equations for
the unknowns (x, y, z). For geometrical reasons it is clear that these equations will
have at least one solution. Indeed the number of solutions is known for special
quadrics. We normally have two solutions for a sphere Späth [14], one or three for
a rotated paraboloid Späth [11], and two up to six for rotated ellipsoids Späth [13]
and hyperboloids. (In the case of plane quadrics, i. e., conic sections, those numbers
would be two, one or three, and two up to four Späth [10, 11, 12]). In the (normal)
case of several solutions we have to determine all of them and pick up that one giving
the shortest distance, i. e., the global minimum.

To afford this we used a damped version of NEWTON’s method implemented as
FORTRAN subroutine TAYLOR in Späth [7, 8]. The necessary partial derivatives

∂fk

∂x
,

∂fk

∂y
,

∂fk

∂z
(k = 1, 2, 3) (16)

could easily be calculated and are linear functions of x, y, z. Because of linearity
forward or central divided differences – an option in TAYLOR – give exactly the
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same results. To make it easier we used this fact in the following. As starting values
we defined (for each i = 1, . . . , m) N different ones, namely

x
(0)
i = p` + v(pu − p`),

y
(0)
i = q` + v(qu − q`), (17)

z
(0)
i = r` + v(ru − r`),

where v means at each appearance some new (equally in [0, 1] distributed) pseudo-
random number. Empirically in each of hundreds of thousand iterations NEWTON’s
method with those starting values converged within 4 and 7 iterations without any
damping to some solution correct to five decimal digits.

We have a maximum of six possible solutions. Thus if we get for N starting values
(for each i = 1, . . . , m) six solutions we could easily select the global minimum of
the N found solutions. For our examples N = 50 was sufficiently large. Even if this
strategy would not work the overall method does not necessarily break down.

4. Adapting the coefficients of the current quadric

Let be
(
xi = xi(aaa), yi = yi(aaa), zi = zi(aaa)

)
, i = 1, . . . , m, the optimal foot points

on the current quadric (3) with aaa = aaa(t). Introducing the vector

sss = sss(aaa) = (x1 − p1, y1 − q1, z1 − r1, . . . , xm − pm, ym − qm, zm − rm)T (18)

of length 3m our overall objective can be written as
1
2
‖sss(aaa)‖2 =

1
2

sss(aaa)Tsss(aaa). (19)

We now try to improve the current aaa = aaa(t) by ∆a∆a∆a = ∆a∆a∆a(t) using the one term
TAYLOR’s expansion

sss(aaa + ∆a∆a∆a) ≈ sss(aaa) + JJJ(aaa)∆a∆a∆a, (20)

where

JJJ(aaa) =
(

∂si

∂ak

)

i=1,...,3m; k=1,...,9

(21)

is the Jacobian, by minimizing the Euclidean norm of the right-hand side of (20)
w.r.t. ∆a∆a∆a. Equivalent to this is to solve the overdetermined system of linear equations

JJJ(aaa)∆a∆a∆a = −sss(aaa) (22)

in the least squares sense. This can be done e. g., by the modified GRAM-SCHMIDT
method. We used the corresponding FORTRAN subroutine MGS from Späth [9].
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The rest of this well-known GAUSS-NEWTON method is to find a value for some
step size control parameter β such that (19) decreases for

aaa(t+1) = aaa(t) + β∆a∆a∆a(t). (23)

If GAUSS-NEWTON is successful in this sense, then we go back to Section 3 and
so on. In this case this alternating method is a descent method. But determining
such a β may not be able in some cases for special starting values.

Calculating the least squares solution of (22) requests estimating JJJ(aaa) that is
more explicitly given by its k-th column (k = 1, . . . , 9) of length 3m, namely by

(
∂x1

∂ak
,

∂y1

∂ak
,

∂z1

∂ak
, . . . ,

∂xm

∂ak
,

∂ym

∂ak
,

∂zm

∂ak

)T

. (24)

Closed but complicated expressions for (24) are given in Ahn, Rauh & Warnecke [2],
Gulliksson, Söderkvist & Watson [5]. We prefer to use central divided differences
for each of the m triples in (24), i. e.,

∂xi

∂ak
≈ xi(aaa+)− xi(aaa−)

2hk
,

∂yi

∂ak
≈ yi(aaa+)− yi(aaa−)

2hk
, (i = 1, . . . , m; k = 1, . . . , 9) (25)

∂zi

∂ak
≈ zi(aaa+)− zi(aaa−)

2hk
,

where

aaa+ = (a1, . . . , ak + hk, . . . , a9),

(26)
aaa− = (a1, . . . , ak − hk, . . . , a9),

and where hk are suitable step sizes, e. g., Späth [8].

hk =

{
.0001 if |ak| ≤ .01,
.01|ak| if |ak| > .01.

(27)

It is true that in this way we will have for each of the m triples (xi, yi, zi) two
foot point problems, i. e., 2m additional ones, namely for aaa+ and aaa− changing with
k, but those are very easy to solve numerically.

Using the actual foot points
(
xi(aaa), yi(aaa), zi(aaa)

)
as starting values it normally

takes not more than two NEWTON iterations to find
(
xi(aaa+), yi(aaa+), zi(aaa+)

)
and(

xi(aaa−), yi(aaa−), zi(aaa−)
)

needed in (23). For the convergence of the overall method
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it is essential to repeat this until getting some suitable β (if possible at all) in (23)
to decrease the objective.

5. Numerical examples and conclusions

In order to demonstrate the capability of the described algorithm we will give five
examples. The first four examples are given for quadrics in the plane. They show
that the type of the conic section will be identified. The fifth example uses data in
3-space.

As starting values for aaa(0) we used (10) and N = 50 for (17). Instead of the
original given data (1) we sometimes also used

(pi − p, qi − q) or (pi − p, qi − q, ri − r) (i = 1, . . . , m) , (28)

where p, q, and r are the means of the corresponding components. The reason is
that occasionally the convergence behaviour will be improved in this way. The value
for S must be the same as for the original data, but, of course, the coefficients aaa are
different.

Example 1. The data points Späth [15] were
p 1 3 4 5 6 4 2 0 -1 -2 -1
q -2 -2 0 1 4 5 4 4 2 -1 -3

The starting values (10) were

aaa(0) = (−.33333,−.33333, .00000, 1.33333, .66667)T .

Within 5 iterations the method converged to

aaa(5) = (−.10968,−.11711, .12641, .25360, .04218)T

with S = .71561. The same solution was also found for

a(0) = (.1, .2, .3, .4, .5)T

and for

a(0) = (−.0571,−.1268,−.0714,−, 0143,−.0571)T .

The solution (an ellipse) together with the given data points can be seen in Figure 1.
Data for drawing the figures were generated by varying y within [q`, qu] and solving
the corresponding quadric equations (2) for x using the found aaa.
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Figure 1. Ellipse 1

Example 2. The data used in Späth [15] were
p 1 2 3 5 7 9 8 6
q 7 6 7 8 7 5 4 2

They are slightly modified from an example in Gander, Golub & Strebel [4]. It is
not clear in advance that they should indicate an ellipse. For the starting value (10)
in the case of the transformed data (28), i. e.,

aaa(0) = (−.17631,−.17631, .00000,−.04408,−.26446)T

we got after 13 iterations

aaa(13) = (−.04910,−.14120, .08054,−.08147,−.35010)T

with S = 0.6867. The resulting ellipse is in Figure 2.
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Figure 2. Ellipse 2

Example 3. The data
p 1 2 3 5 7 5 9 4
q 4 2 6 6 -1 0 8 2

were used in Späth [12] to demonstrate the possibility of fitting with one branch of
a hyperbola. Using again the starting value (10), i. e.,

aaa(0) = (.03548, .03548, .00000,−.35477,−.27834)T

we got after 7 iterations

aaa(7) = (−.01250, .05309, .01776,−.11131,−.45047)T

with S = .58063. Applying the transformed data (28) and

aaa(0) = (−.11368,−.11368, .00000, .11368, .02842)T

via (10) we got

aaa(5) = (.03126,−.13276,−.04438, .40975, .03047)T

and the same value for S. See Figure 3 for the resulting hyperbola.
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Figure 3. Hyperbola 1

Example 4. The data points
p -7 -3 0 1 1 0
q 9 5 4 3 5 8

from Späth [11] either indicate a hyperbola or a parabola. Again for the starting
values (10), i. e.,

aaa(0) = (.02581, .02581, .00000, .15484,−.30968)T

we got

aaa(12) = (.06265, .03678, .10221,−.43768,−.41637)T

with S = .23182. See Figure 4 for the resulting parabola.

Example 5. At first we generated m = 10 data points
p 1 -3 -1 -3 -5 1 3 1 -1 1
q 1 -3 -1 3 -1 -1 -3 -1 5 -5

r 5 3 5 -3 1 5 3 -5 1 -1

on a sphere with the origin as center and radius
√

27.
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Figure 4. Parabola 1

Then we heavily disturbed each number by up to ±.8 and made a translation by
the vector (1, 2, 3)T . This resulted as

p 2.8 -2.5 -.6 -2.5 -4.5 2.3 4.4 2.3 -.4 1.8
q 3.6 -.5 .8 4.1 .5 .5 -.6 -1.3 7.3 -3.7

r 7.6 6.5 8.4 .3 .4 7.5 6.5 -2.4 3.5 1.6

Starting with (10), i. e.,

aaa(0) = (−.13226,−.13226,−.13226, 0, 0, 0,−.01323, .47615, .79358)T

we got after 7 iterations

aaa(7)

= (−.05898,−.10846,−.09854,−.09109,−.07166, .05492, .54158, .30874, .63406)T .
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As there are just 10 data points and 9 parameters to be found S ≈ 0 must be
expected. Indeed we got S = .014361. Deleting one point, e. g., the last one, you
should expect S = 0. Indeed we arrived at S = .12365× 10−9.

As expected in all cases we received the evidently global minimum using the
starting values (10). Though a lot of foot point problems had to be solved in the
above examples, the overall computing time was just some seconds on a PC.
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