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REAL HYPERSURFACES OF A QUATERNIONIC PROJECTIVE
SPACE IN TERMS OF RICCI TENSOR

Yeong-Wu Choe and Eunkyung Choe

Abstract. We obtain some characterizations of a pseudo Ricci-parallel real hyper-
surface in a quaternionic projective space QP n and find the condition that M is
locally congruent to a geodesic hypersphere of QP n.

1. introduction

Let M be a connected real hypersurface of quaternionic projective space QPn,
n ≥ 2, endowed with the Fubini-Study metric G of constant quaternionic sectional
curvature 4. Let N be a unit normal vector field to M . Then Ui = −JiNi=1,2,3 are
structure vectors where {Ji}i=1,2,3 is a local basis of the quaternionic structure of
QPn (Berndt [1], Hamada [2], Ishihara [3], Mart́ınez & Pérez, [7], Pak [8], Pérez
[9, 10]). We put fi(X) = g(X,Ui) for arbitrary X ∈ TM, i = 1, 2, 3. We denote by
A,R and S the shape operator, the curvature tensor and the Ricci tensor of type
(1,1) on M , respectively.

Kimura & Maeda [5, 6] showed to provide some characterizations of geodesic
hyperspheres in Pn(C) in terms of Ricci tensor S. Pn(C)(n ≥ 3) does not admit a
real hypersurface M with parallel Ricci tensor S Ki [4]. They characterize geodesic
hyperspheres in Pn(C) in terms of the derivative of S. The statement is as follows:

Theorem A (Kimura & Maeda [5]). Let M be a real hypersurface of Pn(C), n ≥ 3.
Then the following are equivalent:

(i) The Ricci tensor S of M satisfies

(∇XS)Y = λ{g(φX, Y )ξ + η(Y )φX}
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for any X, Y ∈ TM , where λ is a non-zero constant on M .
(ii) M is locally congruent to a geodesic hypersphere in Pn(C).

In the next year 1993, they Kimura & Maeda [6] generalized the above Theorem
A by λ which is a function. Moreover, Theorem A was extended by Pérez [9] in the
quaternionic projective space QPn in 1996 (for details, see Theorem B).

The main purpose of this paper is to generalize Pérez’s Theorem B.
The authors wish to express their hearty thanks to the referee whose kind sug-

gestion was very much helpful to the improvement of the paper.

2. Preliminaries

A quaternionic Kähler manifold is a Riemannian manifold (M̄, G) on which there
exists a 3-dimensional vector bundle V̄ of tensors of type (1, 1) with a local basis
{Ji}i=1,2,3 of almost Hermitian structures satisfying the following conditions:

(1) Ji
2 = −Id (i = 1, 2, 3), JiJj = Jk, where Id denotes the identity endomorphism

and (i, j, k) is a cyclic permutation of (1, 2, 3).
(2) If ∇̄ denotes the Riemannian connection on M̄ , then there exist three local

1-forms q on M such that

∇̄XJi = qk(X)Jj − qj(X)Jk,

for all vector field X on M , where (i, j, k) is a cyclic permutation of (1, 2, 3).

Let W be a subspace of TpM̄, p ∈ M̄ .

(i) W is called quaternionic if JW ⊂ W for all J ∈ V̄p.
(ii) W is called totally complex if there exists a 1-dimensional subspace V of V̄p

such that JW ⊂ W for all J ∈ V and JW ⊥ W for all J ∈ V ⊥ ⊂ V̄p.
(iii) W is called totally real if JW ⊥ W for all J ∈ V̄p.

Let Q(X) be the 4-subspace spanned by vectors X, J1X, J2X and J3X for any
X ∈ TpM̄ , p ∈ M̄ . If the sectional curvature of any section for Q(X) depends only
on X, we call it Q-sectional curvature. A quaternionic space form of Q-sectional
curvature c is a connected quaternionic Kähler manifold with constant Q-sectional
curvature c. The standard model of a quaternionic space forms are the quater-
nionic projective space QPn(c)(c > 0), the quaternionic space Qn(c = 0) and the
quaternionic hyperbolic space QHn(c)(c < 0).
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The curvature tensor R̄ of QPn is given by

R̄(X,Y )Z =
c

4
[G(Y, Z)X −G(X, Z)Y +

3∑

i=1

(G(JiY, Z)JiX

−G(JiX, Z)JiY − 2G(JiX, Y )JiZ)], (i = 1, 2, 3)

for any vector fields X, Y and Z on QPn Ishihara [3].
Let M be a real hypersurface of QPn and i : M → QPn the isometric immersion.

In a neighborhood of each point of M we choose a unit normal vector field N in
QPn. The Riemannian connections ∇̃ in QPn and ∇ in M are related by following
formulas for any vector fields X and Y on M :

∇̃XY = ∇XY + g(AX,Y )N, (2.1)

∇XN = −AX, (2.2)

where g denotes the Riemannian metric induced from the metric G of QPn and A is
the second fundamental tensor of M in QPn. The mean curvature H of M in QPn

is defined by H = 1
4n−1 traceA.

Let X be a tangent field to M . We write JiX = φiX + fi(X)N, i = 1, 2, 3, where
φiX is the tangent component of JiX and we get

φ2
i X = −X + fi(X)Ui, fi(φiX) = 0, φiUi = 0, i = 1, 2, 3 (2.3)

for any X tangent to M . We obtain

φiX =φjφkX − fk(X)Uj = −φkφjX + fj(X)Uk, (2.4)

fi(X) =fj(φkX) = −fk(φjX), (2.5)

where (i, j, k) is a cyclic permutation of (1, 2, 3). It is also easy to see that for any
X, Y tangent to M ,

g(φiX,Y ) + g(X,φiY ) = 0, g(φiX,φiY ) = g(X, Y )− fi(X)fi(Y ), (2.6)

φiUj = −φjUi = Uk. (2.7)
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From the expression of the curvature tensor of QPn, n ≥ 2, we have that the
equations of Gauss and Codazzi are respectively given by

R(X, Y )Z

= g(Y,Z)X − g(X,Z)Y

+
3∑

i=1

{
g(φiY,Z)φiX − g(φiX, Z)φiY + 2g(X, φiY )φiZ

}

+ g(AY,Z)AX − g(AX, Z)AY, (2.8)

(∇XA)Y − (∇Y A)X =
3∑

i=1

{
fi(X)φiY − fi(Y )φiX + 2g(X, φiY )Ui

}
(2.9)

for any X,Y ,Z tangent to M , where R denotes the curvature tensor of M . From
the equation of Gauss, if we denote by S the (1,1)-type Ricci tensor of M we get

SX = (4n + 7)X − 3
3∑

i=1

fi(X)Ui + hAX −A2X (2.10)

and

(∇XS)Y =−3
3∑

i=1

{
g(φiX,Y )Ui + fi(Y )φiX

}
+ (Xh)AY

+ h(∇XA)Y −A(∇XA)Y − (∇XA)AY (2.11)

for any X,Y tangent to M and h denotes the trace of A. Moreover, as we know how
to derive Ji, i = 1, 2, 3, for any X, Y tangent to M we obtain

∇XUi =qk(X)Uj − qj(X)Uk + φiAX, (2.12)

(∇Xφi)Y =qk(X)φjY − qj(X)φkY + fi(Y )AX − g(AX, Y )Ui, (2.13)

where (i, j, k) denotes a cyclic permutation of (1, 2, 3). These are the basic formulas
for a real hypersurface of QPn.

Now we prepare the following without proof in order to prove our result:

Theorem B (Pérez [9]). Let M be a real hypersurface of QPn, n ≥ 2. Then the
following are equivalent:

(i) The Ricci tensor S of M satisfies

(∇XS)Y = λ
3∑

i=1

{
g(φiX,Y )Ui + fi(Y )φiX

}
(2.14)

for any X, Y ∈ TM , where λ is a non-zero constant on M .
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(ii) M is locally congruent to a geodesic hypersphere in QPn.

A real hypersurface M of QPn is said to be pseudo Ricci-parallel if it satisfies
the equation (2.14).

3. Main Results

The purpose of this section is to prove the following

Theorem 3.1. Let M be a real hypersurface of QPn, n ≥ 2. Then the following
are equivalent:

(i) The Ricci tensor S of M satisfies the equation (2.14) and

−3
3∑

k=1

3∑

i=1

fi(AφkAUk)Ui = 2
3∑

k=1

φkSUk (3.1)

for any X, Y ∈ TM , where λ is a function on M .
(ii) M is locally congruent to a geodesic hypersphere of QPn.

Proof. Suppose that the condition (i) holds. From (2.12), (2.13) and (2.14), we have

(∇W (∇XS))Y − (∇∇W XS)Y

=
3∑

i=1

[
(Wλ)

{
g(φiX,Y )Ui + fi(Y )φiX

}

+ λ
{

fi(X)g(AW,Y )Ui + g(φiX, Y )φiAW

+ g(φiAW,Y )φiX + fi(X)fi(Y )AW − 2fi(Y )g(AW,X)Ui

}]
(3.2)

for any X, Y ,W tangent to M .
Exchanging X and W in (3.2), we have the following

(R(W,X)S)Y

=
3∑

i=1

[
(Wλ)

{
g(φiX,Y )Ui + fi(Y )φiX

}

− (Xλ)
{

g(φiW,Y )Ui + fi(Y )φiW
}

+ λ
{

fi(X)g(AW,Y )Ui + g(φiX, Y )φiAW

+ g(φiAW,Y )φiX + fi(X)fi(Y )AW − fi(W )g(AX, Y )Ui
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− g(φiW,Y )φiAX − g(φiAX,Y )φiW − fi(W )fi(Y )AX
}]

. (3.3)

Let e1, . . . , e4n−1 be local fields of orthonormal vectors on M . From (3.3) and (2.3)
we find

4n−1∑

a=1

g
(
(R(ea, X)S)Y, ea

)

=
3∑

i=1

[
(Uiλ)g(φiX, Y ) + (φiXλ)fi(Y )

+λ
{

fi(X)fi(AY )− g(φiX,AφiY ) + hfi(X)fi(Y )− 2fi(Y )fi(AX)
}]

. (3.4)

Now note that the left hand side of (3.4) is symmetric with respect to X and Y ,
then we have

3∑

i=1

[
2(Uiλ)g(φiX, Y ) + (φiXλ)fi(Y )− (φiY λ)fi(X)

+ 3λ
{

fi(X)fi(AY )− fi(Y )fi(AX)
}]

= 0. (3.5)

Putting Y = φkY and contracting with respect to X, Y in (3.5), we find

4n−1∑

a=1

3∑

i=1

[
2(Uiλ)g(φiea, φkea) + (φieaλ)fi(φkea)− (φiφkeaλ)fi(ea)

+ 3λ
{

fi(ea)fi(Aφkea)− fi(φkea)fi(Aea)
}]

= 0,

therefore

Uiλ = 0 = fj(AUk), (3.6)

where (i, j, k) denotes a cyclic permutation of (1, 2, 3).
On the other hand, setting Y = Uk and X = φkW in (3.5), we see

(φ2
kWλ)− 3λfk(AφkW ) = 0, k = 1, 2, 3.

This, together with (2.3) and (3.6), shows

Wλ = 3λφkAUk, k = 1, 2, 3

for any W ∈ TM , therefore,

gradλ = 3λφkAUk, k = 1, 2, 3. (3.7)
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Hence Equation (3.3) asserts that

(R(W,X)S)Y

= λ
3∑

i=1

[
g
(
φkAUk,W

){
g(φiX, Y )Ui + fi(Y )φiX

}

−g
(
φkAUk, X

){
g(φiW,Y )Ui + fi(Y )φiW

}
+ fi(X)g(AW,Y )Ui

+g
(
φiX, Y

)
φiAW + g

(
φiAW,Y )φiX+fi(X)fi(Y )AW

−fi(W )g(AX,Y )Ui − g
(
φiW,Y

)
φiAX,

−g
(
φiAX, Y

)
φiW − fi(W )fi(Y )AX

]
. (3.8)

It follows from (2.3) and (3.8) that
3∑

k=1

4n−1∑

a=1

g
((

R(ea, X)S
)
Uk, φkea

)
=

(− 12n + 17
)
λ

3∑

k=1

g
(
φkAUk, X

)
. (3.9)

On the other hand we have, where k = 1, 2, 3,

4n−1∑

a=1

g
((

R(ea, X)S
)
Uk, φkea

)
(3.10)

=
4n−1∑

a=1

g
(
R(ea, X)(SUk), φkea

)
−

4n−1∑

a=1

g
(
R(ea, X)Uk, Sφkea

)
.

Equation (2.10) shows that

traceASφk = 0, k = 1, 2, 3. (3.11)

From (2.3), (2.8), (3.10) and (3.11) we see that

3∑

k=1

4n−1∑

a=1

g
((

R(ea, X)S
)
Uk, φkea

)

=
3∑

k=1

[
g
(
AX,

(
SφkA− φkAS

)
Uk

)
+ 4ng

(
φkX, SUk

)]
. (3.12)

By virtue of (3.9) and (3.12) we get

(−12n + 17)λ
3∑

k=1

φkAUk =
3∑

k=1

(
ASφkAUk −AφkASUk − 4nφkSUk

)
. (3.13)

Gauss equation (2.8) tells us that
4n−1∑

a=1

g
((

R(ea, φkea)S
)
Uk, X

)
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=
[
2g

(
AφkAX,SUk

)
+ 2g

(
AφkAUk, SX

)− 4(2n− 1)g
(
φkSUk, X

)]
, (3.14)

for k = 1, 2, 3. On the other hand, from (3.8), we obtain

4n−1∑

a=1

g

((
R

(
ea, φkea

)
S

)
Uk, X

)
= 6λg

(
AUk, φkX

)
, k = 1, 2, 3. (3.15)

In view of (3.14) and (3.15) we have

3λ
3∑

k=1

φkAUk =
3∑

k=1

[
AφkASUk − SAφkASUk + 2(2n− 1)φkSUk

]
. (3.16)

Equation (2.10) implies that

SAφkAUk −ASφkAUk = 3
3∑

i=1

fi(AφkAUk)Ui, k = 1, 2, 3. (3.17)

From (3.13), (3.16) and (3.17) we find

(−12n + 20)λ
3∑

k=1

φkAUk =
3∑

k=1

(
ASφkAUk − SAφkAUk − 2φkSUk

)
. (3.18)

By virtue of (3.1) we get

λφkAUk = 0, k = 1, 2, 3. (3.19)

Consequently, from (3.7) and (3.19) we can conclude that λ is locally constant.
Hence this Theorem 3.1 is proved by Theorem B. ¤

Remark. As illustrated by Theorem 3.1, without any additional condition it is im-
possible to generalize Theorem B under the condition that λ is a fuction.

Motivated by Theorem 3.1, we prove the following

Proposition 1. Let M is a real hypersurface of QPn, n ≥ 2. Then the following
inequality holds:

∥∥∥∥∇S

∥∥∥∥
2

≥ 1
3(2n− 1)

( 3∑

i=1

4n−1∑

a=1

g
((∇aS

)
Ui, φiea

))2

(3.20)

where S is the Ricci tensor of M and e1, . . . , e4n−1 are local fields of orthonormal
frames of M . Moreover, the equality of (3.20) holds if and only if M is locally
congruent to a geodesic hypersphere of QPn.
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Proof. We define the following tensor T on M as:

T (X, Y ) = (∇XS)Y − λ

3∑

i=1

{
g
(
φiX,Y

)
Ui + fi(Y )φiX

}
, (3.21)

where λ is a function on M . Calculating the length of T , we obtain

‖T‖2 = ‖∇S‖2 − 4λ
3∑

i=1

4n−1∑

a=1

g((∇aS)Ui, φiea) + 12λ2(2n− 1)

for any real number λ at any point p ∈ M , we obtain the following inequality

12λ2(2n− 1)− 4λ

3∑

i=1

4n−1∑

a=1

g((∇aS)Ui, φiea) + ‖∇S‖2 ≥ 0. (3.22)

Hence the discriminant of (3.22) shows (3.20). From to this discussion, we find that
the equality of (3.20) implies T = 0, that is to say, M is locally congruent to a
geodesic hypersphere in QPn (cf. Theorem 3.1). ¤

Remark. The right hand side of (3.20) can be expressed in terms of the shape oper-
ator A as:

1
3(2n− 1)

{ 3∑

i=1

(
4n

(
h− fi(AUi)

)
+ φiAUi(h) + trace

(
(∇UiA)Aφi

))}2

.
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