
J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print) 1226-0657
https://doi.org/10.7468/jksmeb.2024.31.4.453 ISSN(Online) 2287-6081
Volume 31, Number 4 (November 2024), Pages 453–476

RIEMANN-STIELTJES INTEGRALS AND THEIR
REPRESENTING MEASURES

Joong Kwoen Lee a and Han Ju Lee b, ∗

Abstract. The Riemann-Stieltjes integrals of continuous functions with respect
to a function of bounded variation can be represented by a regular, Borel, complex
measure. In this paper, we study the link between the Riemann-Stieltjes integral and
measure theory using this representation. Specifically, we investigate the Riemann-
Stieltjes integrability and its measurability. Furthermore, we derive a criterion for
Riemann-Stieltjes integrability through a method different from known proofs. In
particular, we calculate the upper and lower Riemann-Stieltjes integrals with respect
to a monotone increasing function.

1. Introduction

The Riemann-Stieltjes integral is a natural generalization of the Riemann inte-
gral, with its definition detailed in [5]. Its intuitive and accessible nature makes
it a valuable tool for undergraduate students to grasp the concept of integration
with respect to a weight function before moving on to Lebesgue integrals. Addi-
tionally, it proves invaluable in statistics, applicable to both discrete and continuous
probabilities without relying on measure theory.

Typically, undergraduate students encounter the Riemann-Stieltjes integral in
their real analysis courses and then study measure theory separately, usually in
graduate-level courses. However, the natural connection between these topics is
often not addressed in measure theory courses.

While some measure theory textbooks discuss Lebesgue’s criterion for Riemann
integrability and the Lebesgue measurability of Riemann integrable functions, the
link between the Riemann-Stieltjes integral and measure theory is frequently over-
looked. This paper aims to bridge this gap by presenting the following topics:
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(i) The representing measure for the Riemann-Stieltjes integral as given by the
Riesz representation theorem.

(ii) Functions of bounded variation and Borel measures on the real line.
(iii) The criterion for Riemann-Stieltjes integrability within the framework of

measure theory.

2. Preliminaries

In this section, we briefly review the basic properties of Riemann-Stieltjes inte-
grals. Most of them are well-known and can be found in the textbook [1].

2.1. Riemann-Stieltjes Integral Let [a, b] be a compact interval in R. In this
section, all functions will be assumed to be bounded on [a, b]. A partition P of [a, b]
is a finite set of points

P = {x0, . . . , xn}
such that a, b ∈ P and a = x0 < x1 < · · · < xn = b}. A partition P ′ of [a, b] is said
to be finer than P ( or a refinement of P ) if P ⊂ P ′. Let α be a bounded function
on [a, b].

The set of all partitions of [a, b] is denoted by P[a, b]. The norm of a partition
P is the largest length of subintervals of P and is denoted by ‖P‖. We clearly get
‖P ′‖ ≤ ‖P‖ whenever P ⊂ P ′.

Definition 2.1. Let P = {x0, . . . , xn} be a partition of [a, b] and let tk be a point
in the subinterval [xk−1, xk]. A Riemann-Stieltjes sum of f with respect to α is a
sum of the form

S(f, α, P ) =
n∑

k=1

f(tk)(α(xk)− α(xk−1)).

A bounded function f : [a, b] → R is said to be Riemann integrable with respect
to α and we write f ∈ R(α) if there is a number I having the following property:
For every ε > 0, there is a partition Pε of [a, b] such that for every partition P finer
than Pε and for every choice of the points tk in [xk−1, xk] we have

|S(f, α, P )− I| < ε.

If such a number I exists, then it is uniquely determined and is denoted by
∫ b

a
f dα.
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The functions f and α are referred to as the integrand and the integrator. We also
say that the Riemann-Stieltjes integral

∫ b
a fdα exists. In the case that α(x) = x, we

write S(f, P ) instead of S(f, α, P ) and f ∈ R instead of f ∈ R(α). Then integral is
called a Riemann integral and is denoted by

∫ b

a
f dx.

Some basic properties of Riemann-Stieltjes integrals are proved in [1] including the
linearity. Another useful property related to the linearity of integrators is presented
as follows:

Proposition 2.2. If f, α, and β are bounded on [a, b] and f ∈ R(α) ∩ R(β), then
f ∈ R(α + cβ) for all real numbers c. Moreover, we have

∫ b

a
f d(α + cβ) =

∫ b

a
f dα + c

∫ b

a
f dβ.

Integration by parts is one of the most intriguing properties of the Riemann-
Stieltjes integral. The proof is standard and can be found in [1].

Theorem 2.3. Suppose that f and α are bounded functions on [a, b]. If f ∈ R(α),
then α ∈ R(f) and

∫ b

a
fdα +

∫ b

a
αdf = f(b)α(b)− f(a)α(a).

The Riemann-Stieltjes integrability depends on the continuity of both α and f .
Consider the identity function f on a compact interval [0, 1] and the function α

defined to have the value 1 for irrational numbers and 0 for rational numbers. It is
easy to check that α is not Riemann integrable. Hence f 6∈ R(α) by Theorem 2.3.
This shows that f 7→ ∫

fdα is not defined even for continuous functions f if α does
not behave well. Therefore, we focus on functions α of bounded variation, which
are continuous except at countably many points. Since a real-valued function on R
is of bounded variation if and only if it is the difference of two monotone increasing
functions, we begin with monotone increasing functions.

2.2. Monotone Increasing Integrators Let P = {x0, . . . , xn} be a partition of
[a, b] and f, α be bounded functions on [a, b]. Set

Mk(f) = sup{f(x) : x ∈ [xk−1, xk]}
mk(f) = inf{f(x) : x ∈ [xk−1, xk]}.
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for each k = 1, . . . , n. The upper sum U(f, α, P ) of f with respect to α is

U(f, P ) =
n∑

k=1

Mk∆αk

and the lower sum L(f, P ) of f with respec to α is

L(f, P ) =
n∑

k=1

mk∆αk.

Note if α is monotone increasing on [a, b], we have

L(f, α, P ) ≤ S(f, α, P ) ≤ M(f, α, P ).

The following observations are clear:

Definition 2.4. Assume that α is monotone increasing and f is bounded on [a, b].
The upper integral of f with respect to α is defined to be

(U)
∫ b

a
fdα = inf{U(f, α, P ) : P ∈ P[a, b]}.

The lower integral of f with respect to α is defined to be

(L)
∫ b

a
fdα = sup{L(f, α, P ) : P ∈ P[a, b]}

We clearly get

(L)
∫ b

a
fdα ≤ (U)

∫ b

a
fdα.

A monotone increasing function α can be decomposed into a monotone increasing
function γ determined by jumps of α and a continuous monotone increasing function
β, as detailed in Theorem 3.8. Using this decomposition, we will provide a complete
description of the upper and lower integrals of bounded functions in Theorem 4.1
and Theorem 4.3.

A Riemann-Stieltjes integrability with respect to a monotone increasing function
can be characterized by the following Riemann condition with respect to α.

Definition 2.5. Assume that f, α are bounded functions on [a, b]. We say that f

satisfies Riemann condition with respect to α on [a, b] if, for every ε > 0, there is a
partition Pε such that, whenever P is finer than Pε, we get

0 ≤ U(f, α, P )− L(f, α, P ) < ε.
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Note that if α is monotone increasing on [a, b], then Riemann’s condition is equiv-
alent to that for each ε > 0, there is a partition P of [a, b] such that

U(f, α, P )− L(f, α, P ) < ε.

The following theorem is proved in [1].

Theorem 2.6. Assume that α is monotone increasing and f is bounded on [a, b].
TFAE.

(1) f ∈ R(α) on [a, b]
(2) f satisfies Riemann’s condition with respect to α on [a, b].
(3) (U)

∫ b
a fdα = (L)

∫ b
a fdα.

In this case, we have

(U)
∫ b

a
fdα = (L)

∫ b

a
fdα =

∫ b

a
fdα.

2.3. BV functions on R Let f : R → C be a function and we define the total
variation function V (f) by:

V (f)(x) = sup

{
n∑

1

|f(xj)− f(xj−1)| : n ∈ N,−∞ < x0 < · · · < xn = x

}
.

We note that the sums in the definition of V (f) increase when additional subdivision
points xj are added. Therefore, if a < b, the value of V (f)(b) remains unaffected if
a is included among the subdivision points. Consequently,

V (f)(b)− V (f)(a) = sup

{
n∑

1

|f(xj)− f(xj−1)| : n ∈ N, a = x0 < · · · < xn = b

}
.

Thus V (f) is a monotone increasing function with values in [0,∞]. If V (f)(∞) :=
limx→∞ V (f)(x) is finite, we say that f is of bounded variation on R, and denote the
space of all such functions f by BV .

Sometimes we use the notation V (f)([a, b]) = V (f)(b)− V (f)(a) to consider the
total variation of f on the closed interval [a, b].

Let BV ([a, b]) be the set of functions on [a, b] whose total variation on [a, b] is
finite. If f ∈ BV , the restriction of f to [a, b] is in BV ([a, b]) for all a, b. Conversely,
if f ∈ BV ([a, b]) and we extend f to R by defining f(x) = f(a) for x < a and
f(x) = f(b) for x > b, then f ∈ BV .

We present the following three properties of BV functions, which will be useful
later. For detailed proofs, refer to [2]. Essentially, BV functions can be expressed as
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the difference of two monotone increasing functions and they are continuous except
at countably many points. Additionally, it is useful to note that if f is BV , the right
(and. left) continuity of f is preserved in the bounded variation function V (f).

Lemma 2.7. If f ∈ BV and f is real-valued, then V (f) + f and V (f) − f are
monotone increasing.

Theorem 2.8. a. f ∈ BV if and only if Re f ∈ BV and Im f ∈ BV .
b. If f : R→ R, then f ∈ BV if and only if f is the difference of two bounded

increasing functions.
c. If f ∈ BV , then f(x+) = limy→x+ f(y) and f(x−) = limy→x− f(y) exist for

all y ∈ R, as do F (±∞) = limy→±∞ F (y).
d. If f ∈ BV , then the set of points at which f is discontinuous is countable.

Lemma 2.9. Suppose that f ∈ BV . Then V (f)(−∞) = 0 and f is right (resp. left)
continuous at x if and only if V (f) is right (resp. left) continuous at x.

If α is BV and f is bounded on [a, b], then the Riemann-Stieltjes integrability
of f with respect to α is equivalent to that of f with respect to the total variation
function V (α). The complete proof is given below; the neccesity is proved in [1].

Theorem 2.10. Assume that α is of bounded variation on [a, b]. Let V (x) be the
total variation of α on [a, x) if a < x ≤ b, and let V (a) = 0. Suppose that f is a
bounded function on [a, b]. f ∈ R(α) if and only if f ∈ R(V ) on [a, b].

Proof. If V (b) = 0, then α is constant and the result is trivial. So we assume
that V (b) > 0. Let M = sup{|f(x)| : x ∈ [a, b]}. We need verify that f satisfies
Riemann’s condition with respect to V .

Given ε > 0, choose Pε so that for any partition P finer than Pε and all choices
of points tk and t′k in [xk−1, xk], we have∣∣∣∣∣

n∑

k=1

(f(tk)− f(t′k))∆αk

∣∣∣∣∣ <
ε

4
and V (b) <

n∑

k=1

|∆αk|+ ε

4M
,

where ∆αk = α(xk)− α(xk−1) for all 1 ≤ k ≤ n. Let

R = sup

{
n∑

k=1

(f(tk)− f(t′k))∆αk : tk, t
′
k ∈ [xk−1, xk], 1 ≤ k ≤ n

}

Note that
n∑

k=1

(Mk(f)−mk(f))|∆αk| = R <
ε

2
.
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Indeed, it is clear that lefthand side is bigger than or equal to R. On the other hand,
let A = {k : ∆αk ≥ 0} and B = {k : ∆αk < 0}. Given tk, t

′
k in [xk−1, xk] we have

n∑

k=1

(f(tk)− f(t′k))|∆αk| ≤
∑

k∈A

(f(tk)− f(t′k))∆αk +
∑

k∈B

(f(t′k)− f(tk))∆αk

≤
∣∣∣∣∣
∑

k∈A

(f(tk)− f(t′k))∆αk +
∑

k∈B

(f(t′k)− f(tk))∆αk

∣∣∣∣∣ ≤ R

Since tk, t
′
k are arbitrary points in [xk−1, xk], we have

n∑

k=1

(Mk(f)−mk(f))|∆αk| ≤ R <
ε

2
.

On the other hand,
n∑

k=1

(Mk(f)−mk(f))(∆Vk − |∆αk|) ≤ 2M
n∑

k=1

(∆Vk − |∆αk|)

= 2M(V (b)−
n∑

k=1

|∆αk|) <
ε

2
.

Hence
n∑

k=1

(Mk(f)−mk(f))|∆Vk| < ε.

It follows that f satisfies Riemann’s condition and f ∈ R(V ).
Conversely, suppose that f ∈ R(V ) and let α1 = (V + α), α2 = (V −α). For any

x ≤ y in [a, b] we get

α1(y)−α1(x) = sup
x=x0<x1<···<xn=y,n∈N





n∑

j=1

{|α(xj)− α(xj−1)|+ (α(xj)− α(xj−1)}




= 2 sup





n∑

j=1

((α(xj)− α(xj−1))
+ : x = x0 < x1 < · · · < xn = y, n ∈ N





≤ 2 sup





n∑

j=1

|(α(xj)− α(xj−1)| : x = x0 < x1 < · · · < xn = y, n ∈ N




= 2(V (y)− V (x)).

Hence U(f, P, α1) − L(f, P, α1) ≤ 2(U(f, P, V ) − L(f, P, V )) for any partition of P

of [a, b]. This shows that f ∈ V (α1) and, similarly we have f ∈ V (α2). Therefore,
f ∈ V (α1 + α2) by Proposition 2.2. ¤
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If f ∈ R(α) and α is of bounded variation on [a, b], then f ∈ R(V ) on [a, b].
So f ∈ R(V − α) and f ∈ R(V + α). Conversely, if f ∈ R(V − α) and f ∈
R(V + α), then f ∈ R(α) since 2α = (V + α)− (V − α). So the theory of Rieman-
Stieltjes interation for integrators of bounded variation can be reduced to the case
of increasing integrators.

The following two theorems are useful later. For detailed proof, see [1].

Theorem 2.11. Assume that bounded functions f, g ∈ R(α) on [a, b], where α is
monotone increasing on [a, b]. Let F (x) =

∫ x
a fdα and G(x) =

∫ x
a gdα for x ∈ [a, b].

Then f ∈ R(G) and g ∈ R(F ) and we have
∫ b

a
fgdα =

∫ b

a
fdG =

∫ b

a
gdF.

Theorem 2.12. If f is continuous on [a, b] and if α is of bounded variation on
[a, b], then f ∈ R(α) on [a, b].

Now we get the basic inequality for Riemann-Stieltjes integrals.

Theorem 2.13. If α is of bounded variation on [a, b] and f ∈ R(α), then both f

and |f | ∈ R(V (α)). Moreover, we have
∣∣∣∣
∫ b

a
f dα

∣∣∣∣ ≤
∫ b

a
|f(x)|dV (α) ≤ sup

x∈[a,b]
|f(x)|V (α)([a, b]).

Proof. By Theorem 2.10, f ∈ R(α) if and only if f ∈ R(V (α)). It is shown in [1]
that if f ∈ R(V (α)), then |f | ∈ R(V (α)). It is enough to show that

∣∣∣∣
∫ b

a
f dα

∣∣∣∣ ≤
∫ b

a
|f(x)|dV (α).

Given ε > 0, choose Pε so that for any partition P finer than Pε and all choices
of points tk and t′k in [xk−1, xk], we have

∣∣∣∣∣
n∑

k=1

f(tk)(α(xk)− α(xk−1))−
∫ b

a
f dα

∣∣∣∣∣ < ε

and ∣∣∣∣∣
n∑

k=1

|f(t′k)|(V (α)(xk)− V (α)(xk−1))−
∫ b

a
|f | dV (α)

∣∣∣∣∣ < ε.
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So ∣∣∣∣
∫ b

a
f dα

∣∣∣∣ ≤
n∑

k=1

|f(tk)| |α(xk)− α(xk−1)|+ ε

≤
n∑

k=1

|f(tk)| |V (α)(xk)− V (α)(xk−1)|+ ε

≤
n∑

k=1

|f(tk)| |V (α)(xk)− V (α)(xk−1)|+ ε

≤
∫ b

a
|f |dV (α) + 2ε.

Since ε > 0 is arbitrary, we get the desired result. ¤

3. Increasing Functions and its Representing Measures

Recall the following useful theorem, which demonstrates that every Borel measure
on R that is finite on all compact subsets can be obtained from a right-continuous,
monotone increasing function on R. For the proof, see [2].

Theorem 3.1. If α : R → R is any increasing, right-continuous function, there is
a unique Borel measure µα on R such that

µα((a, b]) = α(b)− α(a)

for any a, b. If β is another such function, we have µα = µβ if α − β is constant.
Conversely, if µ is a Borel measure on R that is finite on all compact subsets and
we define

α(x) =





µ((0, x]) if x > 0,

0 if x = 0,

−µ((x, 0] if x < 0,

then α is increasing and right-continuous and µ = µα.

The completion of µα is called the Lebesgue-Stieltjes measure associated to α,
which will be denoted by µα. Note that the completion of Borel σ-algebra BR with
respect to µα is typicallty larger than BR.

Now it is natural question to ask whether the Riemann-Stieltjes integral
∫

fdα

is equal to
∫

fdµα for every Riemann-Stieltjes integrable function f when α is a
monotone increasing function. This fact will be established in Theorem 4.5. To
prove this, we first observe that the Riemann-Stieltjes integrals induce bounded
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linear functionals on the space C([a, b]) of all complex-valued continuous functions on
a compact interval [a, b]. Consequently, we expect that the induced Radon measure
µ associated to the linear functional is equal to the Lebesgue-Stieltjes measure µα

and so we get ∫

[a,b]
fdα =

∫
f dµα

for every f ∈ C([a.b]). Let’s examine these observations carefully.
Let α be a function of bounded variation on [a, b]. We assume that α is defined

on R by defining α(x) = α(a) if x < a and α(x) = α(b) if x > b. If a right limit of a
function f exists at a, we use the notation f(a+) = limx→a+ f(x). Similarly, f(a−)
is defined as the left limit. Given a function f on a domain A, we define the sup
norm ‖f‖∞ as follows:

‖f‖∞ = sup{|f(x)| : x ∈ A}.

Theorem 3.2. Let α be a function of bounded variation on [a, b]. Then there is a
unique real-valued Borel measure µ on R such that for every f ∈ C([a, b]),

∫ b

a
f dα =

∫

[a,b]
fµ.

In particular, µ is the unique real-valued Borel measure satisfying, for p < q,

µ((p, q]) = α(q+)− α(p+).

Proof. Every continuous function f on [a, b] is Riemann-Stieltjes integrable and

I(f) =
∫ b

a
f(t)dα(t)

is a bounded linear functional on C[a, b]. By Proposition 2.13, |I(f)| ≤ ‖f‖∞Vα(b),
where Vα(x) is the total variation of α on [a, x], where a < x ≤ b. By the Riesz
representation theorem, there is a real-valued Borel regular measure µ such that
I(f) =

∫
fdµ for every f ∈ C[a, b]. For each Borel subset E of R, ν(E) = µ([a, b]∩E)

is an extension of µ. So we use this extension and assume that µ is defined on R
and |µ|(R \ [a, b]) = 0. By the integration by parts, α is Riemann integrable with
respect to f ∈ C([a, b]) and we get

I(f) = −
∫ b

a
αdf + f(b)α(b)− f(a)α(a).

Suppose that a < sn < s < t < tn < b and let fn(t) be the piecewise linear
function such that fn(x) = 1 on [s, t] and 0 on the outside of [sn, tn]. Note that
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fn(x) =
∫ x
a gn(x)dx, where gn(x) = 0 on [a, sn]∪ [s, t]∪ [tn, b], g(x) = 1

s−sn
on (sn, s)

and g(x) = 1
t−tn

on (t, tn). Then, by Theorem 2.11
∫ b

a
fndα = −

∫ b

a
αdfn = −

∫ b

a
α(x)gn(x)dx.

So if sn → s and tn → t, then

µ([s, t]) = lim
n

∫
fndµ = lim

n

∫ b

a
fndα

= lim
n

(
− 1

s− sn

∫ s

sn

α(x)dx +
1

tn − t

∫ tn

t
α(x)dx

)

= α(t+)− α(s−).

Letting s → a, we get

µ((a, t]) = α(t+)− α(a+).

If a < t < tn < b, let let fn(t) be the piecewise linear function such that fn(x) = 1
on [a, t] and 0 on the outside of [a, tn]. Note that fn(x) = 1 +

∫ x
a gn(x)dx, where

gn(x) = 0 on [a, t] ∪ [tn, b], and g(x) = 1
t−tn

on (t, tn).
Then by Theorem 2.3 and Theorem 2.11, we have

∫ b

a
fndα = −

∫ b

a
αdfn − α(a) = −

∫ b

a
α(x)gn(x)dx− α(a).

So if tn → t, then

µ([a, t]) = lim
n

∫
fndµ = lim

n

∫ b

a
fndα

= lim
n

(
1

tn − t

∫ tn

t
α(x)dx

)
− α(a)

= α(t+)− α(a).

Since µ([a, b]) =
∫

1dα = α(b) − α(a) = α(b+) − α(a−), we have µ((t, b]) = α(b) −
α(t+). Therefore, we get µ((s, t]) = α(t+)− α(s+) for all s, t ∈ R with s < t and µ

is determined by the right-continuous function α(t+) (t ∈ R).
Note that ν is another real-valued Borel measure such that µ((s, t]) = ν((s, t]) for

all s < t. Since {E : µ(E) = ν(E), E is Borel} is σ-algebra containing the intervals
(s, t], it is the Borel σ-algebra. This proves the uniqueness of µ and the proof is
done. ¤

The real-valued Borel regular measure µ induced from the functional f 7→ ∫ b
a f dα

is called the representing measure for α. It will be denoted by µα. Recall that
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α = α1 − α2, where αi are bounded monotone increasing functions. So for each i,
there is the Lebesgue-Stieltjes measure µi such that

µi((s, t]) = αi(t+)− αi(s+)

for all s < t in R by Theorem 3.1. Hence µα = µ1 − µ2.

Corollary 3.3. Let α, β be functions of bounded variation [a, b]. Then the following
are equivalent:

(1)
∫ b
a fdα =

∫ b
a fdβ for all f ∈ C[a, b].

(2) There is a constant c such that β(t+) = α(t+) + c for all t ∈ R.

Corollary 3.4. If µ is a real-valued Borel measure on [a, b] and the function β on
R, defined by

β(t) =

{
µ([a, t]) t ≥ a

0 t < a,

then µ = µβ.

Note that a function α : [a, b] → C is said to be of bounded variation on [a, b] if
and only if its real and complex parts are of bounded variation on [a, b]. It is easy
to see that Theorem 3.2 can be extended to complex-valued functions of bounded
variation. The complex-valued Borel regular measure µα is called the representing
measure of BV α. There is a connection between the space of functions of bounded
variations (in short, BV) and the space of complex Borel measures on R. Recall the
space NBV (N stands for “normalized”.) defined by

NBV = {f ∈ BV : f is right continuous and f(−∞) = 0}.
Given a function f : [a, b] → C, we extend it to R by defining f(x) = f(a) for

x < a and f(x) = f(b) for x > b. let V (f)(t) = Vf (t) be the total variation of f on
(−∞, t]. Suppose that M([a, b]) be the set of complex-valued Borel regular measures
on R such that |µ|(\[a, b]) = 0. It is a Banach space with the total variation norm.
Let NBV [a, b] be the set of complex-valued functions α of bounded variation on
a compact interval [a, b]. That is, α is BV on R, Vα(a−) = 0, Vα(x) = Vα(b) for
all x > b and α is right-continuous. The following theorem shows that the total
variation is the norm on NBV ([a, b]) and NBV ([a, b]) is isometrically isomorphic to
M([a, b]).

Corollary 3.5. Let NBV ([a, b]) be the set of complex-valued functions α of bounded
variation on a compact interval [a, b]. That is, Vα(a−) = 0, Vα(b) = Vα(x) for all
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x > b and α is right-continuous. Suppose that M([a, b]) be the set of complex-
valued Borel regular measures on R with |µ|(R \ [a, b]) = 0. Then the mapping
Ψ : M([a, b]) → NBV ([a, b]), defined by

Ψ(µ)(t) =

{
µ([a, t]) t ≥ a

0 t < a,

is a surjective isometric isomorphism. In fact, the restricted measure µ|[a,t] of µ to
Borel σ-algebra on [a, t] corresponds to the restricted function Ψ(µ)|[a,t], so

V (Ψ(µ))(t) = |µ|([a, t])

for all t ∈ [a, b].

Proof. It is clear that Ψ is a linear surjective isomorphism by Theorem 3.2. Let α be
a function of bounded variation on [a, b] and let Ψ−1(α) = µα. For each f ∈ C[a, b]
with ‖f‖ ≤ 1, we have

∣∣∣∣∣
∫

[a,b]
fdµα

∣∣∣∣∣ ≤
∣∣∣∣
∫ b

a
fdα

∣∣∣∣ ≤ ‖f‖∞V (α)(b).

Hence ‖µα‖ ≤ V (α)(b). Conversely, if a = t0 < t1 < · · · < tn = b, then
n∑

j=1

|α(tj)− α(tj−1)| =
n∑

j−1

|µα((tj−1, tj ])| ≤ |µα|([a, b])

Hence V (α)(b) ≤ ||µα||. Hence the proof is done.
Given t ∈ (a, b], let να be the Borel regular complex measure such that

∫ t

a
fdα =

∫

[a,t]
fdνα.

Then να([a, s]) = α(s) − α(a) = µα([a, s]) for all a ≤ s ≤ t. Hence να(E) =
µα(E ∩ [a, t]) for all Borel set E ∈ [a, t] and V (α)(t) = ‖να‖ = |µα|([a, t]). ¤

Since M([a.b]) = C([a, b])∗, the total variation norm in M([a, b]) is complete,
hence we get the following result:

Corollary 3.6. Let NBV ([a, b]) be the set of complex-valued functions α of bounded
variation on a compact interval [a, b] such that V (α)(a−) = 0, V (α)(x) = V (α)(b)
for all x > b and α is right-continuous. Then the total variation V (α)(b) (α ∈
NBV ([a, b]) is a complete norm.
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There is a connection between BV and the space of complex Borel meausres on
R. Recall the space NBV (N stands for “normalized”.) defined by

NBV = {f ∈ BV : f is right continuous and f(−∞) = 0}.

Since [0, 1] is homeomorphic to the extended real number system R, so NBV

is isometrically isomorphic to the subspace NBV0([0, 1]) of NBV ([0, 1]) consists of
α ∈ NBV ([0, 1]) with α(0) = 0 and we get the following from Corollary 3.5.

Corollary 3.7. Let NBV be the set of complex-valued functions α of bounded vari-
ation on R such that limt→−∞ α(t) = 0 and α is right-continuous. Suppose that
M(R) be the set of complex-valued Borel regular measures on R. Then the mapping
Ψ : M(R) → NBV , defined by Ψ(µ)(t) = µ((−∞, t]) for all t ∈ R, is a surjec-
tive isometric isomorphism. In fact, the restricted measure µ|(−∞,t] of µ to Borel
σ-algebra on (−∞, t] corresponds to the restricted function Ψ(µ)|(−∞,t], so

V (Ψ(µ))(t) = |µ|((−∞, t])

for all t ∈ R.

A complex Borel measure µ on Rn is called discrete if there is a countable set
{xj} ⊂ Rn and complex numbers cj such that

∑
j |cj | < ∞ and µ =

∑
j cjδxj , where

δx is the point mass at x. On the other hand, µ is called continuous if µ({x}) = 0
for all x ∈ Rn. Any complex measure µ can be written uniquely as µ = µd + µc,
where µd is discrete and µc is continuous. Indeed, let E = {x : µ({x}) 6= 0} for all
x ∈ Rn. Then for any countable subset F of E, the series

∑
x∈F µ({x}) converges

absolutely to µ(F ) and the set {x : |µ({x})| > 1/k} is finite for all k. It follows
that E is countable. Hence µd(A) = µ(A ∩ E) is discrete and µc(A) = µ(A \ E) is
continuous.

If µ is discrete, then µ ⊥ m, where m is the Lebesgue measure and if µ ¿ m, then
µ is continuous. Thus any (regular) complex Borel measure of Rn can be uniquely

µ = µd + µac + µsc,

where µd is discrete, µac is absolutely continuous with respect to m, and µsc is
singular continuous measure that is µsc is continuous but µsc ⊥ m.

Now we decompose a monotone increasing function to its jump part and its
continuous part.
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Let γ : [a, b] → R be an increasing function such that there is a sequence {xk} ∈
[a, b] such that γ =

∑∞
k=1 Jk(γ), where

Jk(γ)(x) =





0 if x < xk

γ(xk)− γ(xk−) if x = xk

γ(xk+)− γ(xk−) if x > xk.

,

where right limit (resp. left limit) can be regarded as the right limit (resp. left limit)
of extended γ to R by γ(x) = g(a) if x < a and γ(x) = g(b) if x > b. Note that

∞∑

j=1

(γ(xj+)− γ(xj−)) ≤ γ(b)− γ(a) < ∞.

Such a γ is called a monotone increasing function determined by jumps at {xk}.
Note that, in this case, the representing measure µγ is discrete.

Theorem 3.8. Let f : R → R be a monotone increasing function. Then there
are two monotone increasing functions fc, fd such that fc is continuous on R, fd is
determined by jumps of f and

f = fc + fd.

Proof. Let f : R → R be a monotone increasing function and Df be the set of all
discontinuity points of f . Since Df is countable, we may assume that Df = {xk :
k ∈ I} for some countble set I and let

Jk(f)(x) = Jk(x) =





0 if x < xk

f(xk)− f(xk−) if x = xk

f(xk+)− f(xk−) if x > xk.

So |Jk(x)| ≤ f(xk+)− f(xk−) for all x ∈ R. Note that for each a < b in R, we get
∑

Df∩[a,b]

(f(xj+)− f(xj−)) ≤ f(b)− f(a) < ∞.

Now define γ(f) : R→ R to be a monotone increasing function by

γ(f) =
∑

k∈I

Jk.

The Weierstrass M-test shows that J(f) converges uniformly on each compact inter-
val [a, b] in R. Hence we get Df = Dγ . Let g = f − Jk. Then clearly, g is monotone
increasing and g(x) = f(x) on (−∞, xk) and g(x) = f(x) − (f(xk+) − f(xk−) on
(xk,∞). So g is also monotone increasing on (xk,∞). Since

g(xk) = f(xk−) = g(xk−) = g(xk+),



468 Joong Kwoen Lee & Han Ju Lee

g is continuous at xk and g is monotone increasing on R. So the jump at xk is
removed by subtracting f by Jk and the resulting function f − Jk is continuous
on (R \ Df ) ∪ {xk}, monotone increasing on R. The same reasoning shows that
f − (Jk + Jk+1) = (g − Jk)− Jk+1 is also monotone increasing and it is continuous
on (R \Df )∪{xk, xk+1}. Hence f − γ(f) = limn(f −∑n

1 Jk) is monotone increasing
and continuous on R. ¤

Let Df be the set of all discontinuous points of f . Let µ be the representing
measure for a monotone increasing function f . That is, µ is the regular Borel
measure satisfying µ((a, b]) = f(b+) − f(a+) for all real a < b. Then the set
{x : µ({x}) 6= 0} is the set Df . This observation leads to the following theorem.

Theorem 3.9. Let f : R → R be BV and let µ be its representing measure. Then
the following hold:

a. The total variation function V of f is represented by |µ|.
b. The Jordan decompositions f1 = 1

2(V +f), f2 = 1
2(V−f) of f are represented

by µ+ and µ−, respectively.
c. Df1 and Df2 are disjoint and DV = Df = Df1 ∪Df2.

Proof. Since |µ| is the representing measure of V (f), (a) and (b) hold. Df = DV is
proved by Lemma 2.9. Note that Df1 = {x ∈ R : µ+({x}) 6= 0} and Df2 = {x ∈ R :
µ−({x}) 6= 0} and µ+ ⊥ µ−. Hence they are disjoint. Since |µ| = µ+ + µ− and

{x ∈ R : |µ|({x}) 6= 0} = {x ∈ R : µ+({x}) 6= 0} ∪ {x ∈ R : µ−({x}) 6= 0}.
Therefore, we get DV = Df1 ∪Df2 . ¤

4. Criterion for Existence of Riemann-Stietjes Integrals

Theorem 4.1. Let f : [a, b] → R be a bounded function. Let H(x) = lim supy→x f(x)
and h(x) = lim infy→x f(x). Suppose that α is continuous, monotone increasing and
that µ is its representing measure for α. Then H, h are Borel measurable and we
get

(U)
∫ b

a
f(x) dα(x) =

∫
H dµ, (L)

∫ b

a
f(x) dα(x) =

∫
h dµ.

Proof. For each partition P = {x0 = a < · · · < xn = b}, let

Mj = sup{f(x) : x ∈ [xj−1, xj ]} and mj = inf{f(x) : x ∈ [xj−1, xj ]}
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and put

GP =
n∑

j=1

Mj(f)χ(xj−1,xj ], gP =
n∑

j=1

mj(f)χ(xj−1,xj ].

Since µ is continuous, we get U(f, P, α) =
∫

Gpdµ and L(f, P, α) =
∫

gP dµ.
Recall that

(U)
∫ b

a
f(x) dx = sup

P
U(f, P, α)

and

(L)
∫ b

a
f(x) dx = inf

P
L(f, P, α),

where P ranges over all partions of [a, b]. By taking two sequences and taking their
refinements, there is a sequence {Pn} such that

lim
n

U(f, Pn, α) = (U)
∫ b

a
f(x) dµ

and

lim
n

L(f, Pn, α) = (L)
∫ b

a
f(x) dµ.

We may assume that ‖Pn‖ < 1/n and Pn ⊂ Pn+1 for every n. The sequence Gn =
GPn monotonically decreases and the sequence gn = gPn monotonically increases.
Let G = limn Gn and g = limn gPn . So they are Borel measurable.

We claim that G = H a.e. [µ]. Given ε > 0, for each x ∈ I = [a, b], there is
δx > 0 such that

sup
|y−x|<δx, y∈I

f(y) < H(x) + ε.

Since I is compact and {B(x, δx)}x∈I is an open cover of I, there is a finite subcover
{B(xj , δj)}m

j=1 of I. Let δ = minj δj . If 2/n < δ, Pn = {a = t0 < · · · < tk = b} and
if x ∈ [tj−1, tj ],

sup{f(y) : y ∈ [xj−1, xj ]} ≤ sup
|y−x|<δ,y∈I

f(y) < H(x) + ε.

Hence Gn ≤ H(x) + ε and G ≤ H(x) + ε. This holds for arbitrary ε > 0, G ≤ H.
On the other hand, H(x) ≤ Gn(x) on each open subinterval (tj−1, tj) of Pn. Let
T =

⋃
n Pn, then H ≤ Gn on I \ T for each n and µ(T ) = 0. So, H ≤ G on I \ T .

Therefore G = H on I \T . Since T is countable, H is Borel measurable and G = H

µ-a.e. The proof that g = h µ-a.e. is similar to the previous case and we omit it. ¤
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The following result is a generalization of Lebesgue’s criterion for the Riemann
integrability, where, if α is the identity fuunction, its representing measure is the
Lebesgue measure.

Theorem 4.2. Let f be a bounded function and α be a monotone increasing and
continuous function on [a, b] and let D be the set of discontinuity points of f . Then
f ∈ R(α) in [a, b] if and only if D has µ-measure zero, where µ is the representing
measure for α. In particular, f is µ̄-measurable and we have

∫ b

a
fdα =

∫
fdµ,

where µ̄ is the completion of µ.

Proof. Note that f is continuous at x if and only if H(x) = h(x). Suppose that
µ(D) = 0. Then h = H = f µ-a.e. since h ≤ f ≤ H. Hence

(U)
∫ b

a
f(x) dα(x) = (L)

∫ b

a
f(x) dα(x) =

∫
fdµ.

Hence f is Riemann-Stieltjes integrable and
∫ b

a
fdα =

∫
fdµ.

On the other hand, f is Riemann-Stieltjes integrable, then∫
(H − h) dµ = 0.

Hnece µ(D) = 0. The proof is done. ¤

Now we need calculate the upper and lower Riemann-Stieltjes integrals with
respect to a monotone increasing function determined by jumps. To achieve this,
we need to introduce some basic concepts.

Let f be a function defined on [x, x+δ) for some δ > 0. We define its right-limsup
and right-liminf as follows:

Hr(x) = lim
δ→0

[sup{f(y) : x ≤ y ≤ x + δ}]
hr(x) = lim

δ→0
[inf{f(y) : x ≤ y ≤ x + δ}] .

Likewise, we define its left-limsup and left-liminf. Let f be a function defined on
(x− δ, x] for some δ > 0 and let

Hl(x) = lim
δ→0

[sup{f(y) : x− δ ≤ y ≤ x}]
hl(x) = lim

δ→0
[inf{f(y) : x− δ ≤ y ≤ x}] .
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Note that Hl(x) = hl(x) if and only if f(x−) exists and f(x−) = f(x). Similarly,
Hr(x) = hr(x) if and only if f(x+) exists and f(x+) = f(x).

Theorem 4.3. Let f : [a, b] → R be a bounded function and γ be a monotone
increasing function determined by jumps at {xk}. Then

(U)
∫ b

a
fdγ =

∞∑

1

Hr(xk)(γ(xk+)− γ(xk)) +
∞∑

1

Hl(xk)(γ(xk)− γ(xk−))

(L)
∫ b

a
fdγ =

∞∑

1

hr(xk)(γ(xk+)− γ(xk)) +
∞∑

1

hl(xk)(γ(xk)− γ(xk−)).

Proof. Let γn =
∑n

k=1 Jk(γ). We will show that

(U)
∫ b

a
fdγn =

n∑

1

Hr(xk)(γ(xk+)− γ(xk)) +
n∑

1

Hl(xk)(γ(xk)− γ(xk−)).

Let Pm = {a = s0 < s1 < x1 < t1 < s2 < x2 < t2 < · · · < sn < xn < tn < tn+1 =
b} be a partition of [a, b], where max{tj − sj : 1 ≤ j ≤ n} ≤ 1/m. Then,

U(f, Pm, γn) =
n∑

i=1

sup{f(x) : x ∈ [xi, ti]}(γ(ti)− γ(xi))

+
n∑

i=1

sup{f(x) : x ∈ [si, xi]}(γ(xi)− γ(si)).

For any partition Q of [a, b] we get

lim
m

U(f, Q ∪ Pm, γn) =
n∑

1

Hr(xk)(γ(xk+)− γ(xk)) +
n∑

1

Hl(xk)(γ(xk)− γ(xk−)).

So

(U)
∫ b

a
fdγn ≤ lim

m
U(f, Pm, γn).

Given ε > 0, there is a partition P of [a, b] such that

U(f, P, γn) < (U)
∫ b

a
fdγ + ε.

Then

U(f, P ∪ Pm, γn) ≤ U(f, P, γn) < (U)
∫ b

a
fdγ + ε.

for all m. Hence limm U(f, P ∪ Pm, γn) ≤ (U)
∫ b
a fdγ + ε. Since ε > 0 is arbitrary,

limm U(f, P ∪ Pm, γn) ≤ (U)
∫ b
a fdγ. The first proof is done.
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Let M = sup{|f(x) : x ∈ [a, b]}. Then we get

|U(f, P, γ)− U(f, P, γn)| = |U(f, P, γ − γn)| ≤
∞∑

k=n

M(γ(xk+)− γ(xk−))

for every partition of P . Given ε > 0, there is N such that
∑∞

k=N M(γ(xk+) −
γ(xk−)) < ε. Then U(f, P, γ − γn) < ε for every partition P of [a, b] and for every
n ≥ N . For each n ≥ N , choose a partition Pn such that

U(f, Pn, γn) < (U)
∫ b

a
fdγn + ε and U(f, Pn, γ) < (U)

∫ b

a
fdγ + ε.

If n ≥ N , then

(U)
∫ b

a
f(x)dγ ≤ U(f, Pn, γ) ≤ U(f, Pn, γn) + ε

≤ (U)
∫ b

a
fdγn + 2ε

(U)
∫ b

a
fdγ ≥ U(f, Pn, γ)− ε > U(f, Pn, γn)− 2ε

≥ (U)
∫ b

a
fdγn − 3ε

Hence

(U)
∫ b

a
fdγ = lim

n
(U)

∫ b

a
fdγn

and we get the desired result. The proof on the lower Riemann-Stieltjes integral is
similar and we omit the proof. ¤

Theorem 4.4. Given a monotone increasing function α : [a, b] → R, let {xk} be the
set of discontinuity points of α. Then β = α −∑∞

k=1 Jk(α) is monotone increasing
and continuous. Let γ =

∑∞
k=1 Jk(α). Then

(U)
∫ b

a
fdα = (U)

∫ b

a
fdβ + (U)

∫ b

a
fdγ

(L)
∫ b

a
fdα = (L)

∫ b

a
fdβ + (L)

∫ b

a
fdγ.

In particular, f ∈ R(α) in [a, b] if and only if f ∈ R(β) and f ∈ R(γ)

Proof. U(f, P, α) = U(f, P, β) + U(f, P, γ) ≥ (U)
∫ b
a fdβ + (U)

∫ b
a fdγ and

(U)
∫ b

a
fdα ≥ (U)

∫ b

a
fdβ + (U)

∫ b

a
fdγ.
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On the other hand, if P and Q are partitions of [a, b],

(U)
∫ b

a
fdα ≤ U(f, P ∪Q,α) = U(f, P ∪Q, β) + U(f, P ∪Q, γ)

≤ U(f, P, β) + U(f,Q, γ).

So we get

(U)
∫ b

a
fdα ≤ (U)

∫ b

a
fdβ + (U)

∫ b

a
fdγ.

¤

In summary, we get the following result:

Theorem 4.5 (Criterion for Riemann-Stieltjes integrability). Let f be a bounded
function and α be a nondecreasing function on [a, b] with discontinuity points {xk}.
Let µ be the representing measure of α and µ̄ be the completion of µ. Suppose
that µc be the representing measure of the continuous part of α and D be the set
of discontinuity points of f . Then f ∈ R(α) in [a, b] if and only if (i) µc(D) = 0
(ii) f(x+) exists and f(x+) = f(x) whenever α(x+) − α(x) > 0 and f(x−) exists
and f(x−) = f(x) whenever α(x) − α(x−) > 0. In particular, if f ∈ R(α), f is
µ̄-measurable and

∫ b

a
fdα =

∫
fdµ̄c +

∞∑

k=1

f(xk)(α(xk+)− α(xk−)) =
∫

fdµ̄.

Theorem 4.5 is presented in [3], and a more direct proof is provided in [4]. The
proof given here differs somewhat from these two proofs, as it is derived from the
comprehensive description of the upper and lower Riemann-Stieltjes integrals.

The following result is proved in [4]. Here we provide an alternative proof based
on measure theory.

Proposition 4.6. Let f be a bounded function. Suppose that D is the set of dis-
continuity points of f and Dα is the set of discontinuities of α. Then µc(D) = 0 if
and only if, given ε > 0, there is a (finite or countable) sequence of open intervals
{(ak, bk)} in R such that D \Dα ⊂

⋃
k(ak, bk) and

∑

k

(α(bk)− α(ak)) < ε.

Proof. (Sufficiency) Let β be the continuous part of α. Then The condition is
satisfied with β and it means that µc(D \Dα) = µc(D) = 0 by the outer regularity
of µc.
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(Necessity) Suppose that µc(D) = µ(D \Dα) = 0. Then there is an open set V

in R such that D \ Dα ⊂ V such that µ(V ) < ε. Since V is an open set in R, let
V =

⋃∞
j=1(aj , bj) as the union of disjoint open intervals. So

µ(V ) =
∞∑

j=1

(α(bj−)− α(aj+)) < ε.

Note that given (s, t) ⊂ R, chosose a sequence sn < tn such that {sn} decreasingly
converges to s, {tn} increasingly converges to t and sn, tn ∈ R \ (D ∪Dα) for all n,
where α is regarded as a function in R by extension.

Then
∑∞

n=1(α(tn + 1) − α(tn)) = α(b−) − α(t1) and
∑∞

n=1(α(sn) − α(sn+1) =
α(s1)− α(a+). Hence

α(b−)− α(a+) =
∞∑

n=1

(α(tn+1)− α(tn)) + α(t1)− α(s1) +
∞∑

n=1

(α(sn)− α(sn+1)).

So there is a set A = {sn : n ≥ 1} ∪ {tn : n ≥ 1} ⊂ (s, t) \ (D ∪ Dα) such that
µ(A) = 0 and

(s, t) \A =
∞⋃

j=1

(xn+1, xn) ∪ (x1, y1) ∪
∞⋃

n=1

(yn, yn+1).

For each interval j, there is a countable set Aj ⊂ (aj , bj) \ (D ∪Dα) such that

(aj , bj) \Aj =
∞⋃

k=1

(aj,k, bj,k)

as the union of disjoint open intervals,

Aj = {aj,k : k ≥ 1} ∪ {bj,k : k ≥ 1}
and µ(Aj) = 0. So

α(bj−)− α(aj+) = µ((aj , bj)) = µ((aj , bj) \Aj) =
∞∑

k=1

(α(aj,k)− α(bj,k)).

So we get

D \Dα ⊂ (V \Dα) \
⋃

j

Aj =
∞⋃

j=1

∞⋃

k=1

(aj,k, bj,k),

where (aj,k, bj,k)’s are disjoint open intervals.

µ(V \Dα) = µ((V \Dα) \
⋃

j

Aj) =
∞∑

k=1

∞∑

j=1

(α(bj,k)− α(bj,k)) < ε.

So we get the desired result. ¤
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Now we conclude with an alternative proof of Theorem 2.10, based on a criterion
of Riemann-Stieltjes integrability (Theorem 4.5) and measure theory.

Theorem 4.7. Let f : [a, b] → R be a bounded function and α be in BV [a, b]. Then
f ∈ R(α) if and only if f ∈ R(V ), where V = V (α) is the total variation function
of α.

Proof. Now we give another proof based on the measure theory. For the direct proof,
see the proof of Theorem 2.10. Let µ be the representing measure of α. Then |µ|
is the representing measure of V . Then the positive part µ+, and the negative part
µ− of µ are representing measures of α1 = 1

2(V + f) and α2 = 1
2(V − f). Given a

function g, let Dg be the set of all discontinuities of g. Then DV = Dα1 ∪Dα2 , this
follows easily from the fact that Dg = {x : µg({x}) > 0} if g is monotone increasing
and µg is the representing measure of g. Note also that DV = Dα by Theorem 2.9.
Let P and N be Borel sets such that P ∪ N = [a, b] and µ+(E) = µ(E ∩ P ) and
µ−(E) = µ(E ∩ N) for every Borel set E. Hence Dα1 ⊂ P and Dα2 ⊂ N . Since
f ∈ R(V ), |µ|(Df \DV ) = 0.

µ+(Df \Dα1) = µ+((Df \ (Dα1 ∪Dα2) ∪ (Df ∩Dα2) \Dα1)

= µ+(Df \DV ) ≤ |µ|(Df \DV ) = 0.

Similarly, µ−(D\Dα2) = 0. Suppose that α1(x+) > α1(x), then V (x+) > V (x) and
so f(x+) exists and f(x+) = f(x). Similarly, if α1(x−) < α(x−), then f(x−) exists
and f(x−) = f(x). Therefore, f ∈ R(α1). The same proof shows that f ∈ R(α2).
Since α = 1

2(α1 − α2), we get f ∈ R(α) by Proposition 2.2. ¤
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