LEFT AND RIGHT CORESIDUATED LATTICES

Ju-mok Oh

Abstract. In this paper, we introduce the pairs of negations and pseudo t-conorms on lattices. As a noncommutative sense, we define left and right coresiduated lattices which are an algebraic structure to deal information systems. We investigate their properties and construct them. Moreover, we give their examples.

1. INTRODUCTION

Ward et al. [15] introduced a complete residuated lattice as a generalization of BL-algebras and left continuous t-norms [5, 6, 7]. Many researchers [1-3, 7-8, 15] developed algebraic structures in complete residuated lattices as a formal tool to deal information systems, fuzzy concepts and decision rules in the data analysis. Moreover, Junsheung et al.[9] introduced a complete coresiduated lattice as the generalization of t-conorm. Various fuzzy concept lattices on information systems were studied in complete coresiduated lattices [10,13].

A non-commutative algebraic structure, Turunen [14] introduced a generalized residuated lattice as a generalization of weak-pseudo-BL-algebras and left continuous pseudo-t-norm $[4, 5, 6]$.

In this paper, weak conditions of algebraic structure are needed to analyze large data and divide them into small groups. We introduce left and right coresiduated lattices as a noncommutative sense. We investigate their properties. Our purpose is to create various coresiduated lattices with the pairs of negations and pseudo t-conorms on lattices. As a main result, in Theorem 3.5, we show that if S is a pseudo t-conorm with $S($ $\frac{1}{\sqrt{2}}$ $\lim_{i \in \Gamma} x_i, y$ = $\bigwedge_{i \in I} S(x_i, y)$ and we define $M_2(x, y)$ =

 \circ 2024 Korean Soc. Math. Educ.

Received by the editors May 23, 2024. Revised October 13, 2024. Accepted October 22, 2024.

²⁰²⁰ Mathematics Subject Classification. 03E72, 54A40, 54B10.

Key words and phrases. pseudo t-conorms, pairs of negations, left (resp. right, generalized) coresiduated lattices.

This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.

 \mathbf{v} $\{z \in L \mid S(z, y) \geq x\},\$ then $(L, \vee, \wedge, S, M_2, \perp, \perp)$ is a right coresiduated lattice. Moreover, if S is a pseudo t-conorm with $S(x, \bigwedge_{j\in\Gamma} y_j) = \bigwedge_{j\in J} S(x, y_j)$ and we define $M_1(x, y) = \bigwedge \{z \in L \mid S(y, z) \geq x\},\$ then $(L, \vee, \wedge, S, M_1, \perp, \top)$ is a left coresiduated lattice. We give their examples.

In Theorem 3.9, we can obtain generalized (resp. left, right) left and right coresiduated lattices from the pairs of negations and pseudo t-conorms on lattices. We construct them.

2. Preliminaries

In this paper, we assume that $(L, \vee, \wedge, \perp, \top)$ is a lattice with a bottom element ⊥ and a top element \top instead of [0, 1]. Moreover, we denote \lor and \land if they exist.

Definition 2.1 ([4, 5]). A map $S: L \times L \rightarrow L$ is called a *pseudo t-conorm* if it satisfies the following conditions:

(S1) $S(x, S(y, z)) = S(S(x, y), z)$ for all $x, y, z \in L$, (S2) If $y \leq z$, $S(x, y) \leq S(x, z)$ and $S(y, x) \leq S(z, x)$, (S3) $S(x, \perp) = S(\perp, x) = x$. A pseudo t-conorm is called a *t-conorm* if $S(x, y) = S(y, x)$ for $x, y \in L$.

Definition 2.2 ([4, 5]). A pair (n_1, n_2) with maps $n_i: L \to L$ is called a pair of negations if it satisfies the following conditions:

(N1) $n_i(\top) = \bot, n_i(\bot) = \top$ for all $i \in \{1, 2\}.$ (N2) $n_i(x) > n_i(y)$ for $x \le y$ and $i \in \{1, 2\}$. (N3) $n_1(n_2(x)) = n_2(n_1(x)) = x$ for all $x \in L$.

3. Left and Right Coresiduated Lattices

Definition 3.1. A structure $(L, \vee, \wedge, S, M_1, \perp, \top)$ is called a *left coresiduated lattice* if it satisfies the following conditions:

 (C) S is a pseudo t-conorm,

(LC) $S(x, y) \geq z$ iff $y \geq M_1(z, x)$ for $x, y, z \in L$.

A structure $(L, \vee, \wedge, S, M_2, \perp, \top)$ is called a *right coresiduated lattice* if it satisfies (C) and

(RC) $S(x, y) > z$ iff $x > M₂(z, y)$, for $x, y, z \in L$.

A structure $(L, \vee, \wedge, S, M_1, M_2, \perp, \top)$ is called a *generalized coresiduated lattice* if it is a left and right coresiduated lattice.

Theorem 3.2. Let $(L, \vee, \wedge, S, M_1, \perp, \top)$ be a left coresiduated lattice. For each $x, y, z, x_i, y_i \in L$, the following properties are hold.

- (1) $S(y, M_1(x, y)) \geq x$ and $S(M_1(x, y), z) \geq M_1(S(x, z), y)$.
- (2) If $y \le z$, then $M_1(x, z) \le M_1(x, y)$ and $M_1(y, z) \le M_1(z, x)$.
- (3) $S(x, \bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} S(x, y_i)$

(4) $M_1(x, \bigwedge_{i \in \Gamma} y_i) \geq \bigvee_{i \in \Gamma} M_1(x, y_i)$. If S(λ $\lambda_{i \in \Gamma} x_i, y) = \bigwedge_{i \in \Gamma} S(x_i, y)$, the equality holds. $\ddot{}$

- $(5) M_1($ $i \in \Gamma} x_i, y) = \bigvee_{i \in \Gamma} M_1(x_i, y).$ $\frac{v}{\lambda}$
- (6) $M_1(x, \bigvee_{i \in \Gamma} y_i) \le$ $i \in \Gamma M_1(x, y_i)$ and $M_1(x)$ λ $_{i\in\Gamma}\,x_i,y) \leq$ \mathbf{v} $_{i\in\Gamma} M_1(x_i,y)$.
- (7) $M_1(M_1(x, y), z) = M_1(x, S(y, z)).$
- (8) $S(M_1(y, z), M_1(x, y)) > M_1(x, z)$.
- (9) $M_1(x, z) \geq M_1(S(y, x), S(y, z)).$
- (10) $M_1(x, y) \geq M_1(M_1(x, z), M_1(y, z)).$
- (11) $M_1(x,x) = \perp$.
- (12) $x \leq y$ iff $M_1(x, y) = \perp$.

Proof. (1) Since $M_1(x, y) \ge M_1(x, y)$, by (LC), $S(y, M_1(x, y)) \ge x$. Since $S(y, S(M_1(x, y), z)) = S(S(y, M_1(x, y)), z) > S(x, z),$ by (LC), $S(M_1(x, y), z) \geq M_1(S(x, z), y)$.

(2) Since $x \leq S(y, M_1(x, y)) \leq S(z, M_1(x, y))$, $M_1(x, z) \leq M_1(x, y)$. Since $S(x, M_1(z, x)) \geq z$ from (1), $y \leq z \leq S(x, M_1(z, x))$. By (LC), $M_1(y, x) \leq M_1(z, x)$.

(3) By (S2), $S(x, \Lambda_{i \in \Gamma} y_i) \leq \Lambda_{i \in \Gamma} S(x, y_i)$. Since $\Lambda_{i \in \Gamma} S(x, y_i) \leq S(x, y_i)$, by $(LC), M_1(\bigwedge_{i\in \Gamma} S(x,y_i), x) \leq y_i \text{ implies } M_1(\bigwedge_{i\in \Gamma} S(x,y_i), x) \leq \bigwedge_{i\in \Gamma} y_i. \text{ Hence}$ $\sum_{i\in\Gamma} S(x, y_i) \leq S(x, \bigwedge_{i\in\Gamma} y_i)$. Thus $\bigwedge_{i\in\Gamma} S(x, y_i) = S(x, \bigwedge_{i\in\Gamma} y_i)$.

(4) By (2), $M_1(x, \bigwedge_{i \in \Gamma} y_i) \geq \bigvee_{i \in \Gamma} M_1(x, y_i)$. If $S(\bigwedge_{i \in \Gamma} x_i, y) = \bigwedge_{i \in \Gamma} S(x_i, y)$, then λ $\ddot{}$ $\ddot{}$

$$
S(\bigwedge_{i \in \Gamma} y_i, \bigvee_{i \in \Gamma} M_1(x, y_i)) = \bigwedge_{i \in \Gamma} S(y_i, \bigvee_{i \in \Gamma} M_1(x, y_i))
$$

$$
\geq \bigwedge_{i \in \Gamma} S(y_i, M_1(x, y_i)) \geq x.
$$

Hence $\bigvee_{i \in \Gamma} M_1(x, y_i) \geq M_1(x, \bigwedge_{i \in \Gamma} y_i).$ $\frac{5}{\sqrt{2}}$ \≀∈
、

 (5) By (2) , $M_1($ $_{i\in\Gamma} x_i, y) \geq$ $(y) \geq \bigvee_{i \in \Gamma} M_1(x_i, y)$. Since $S(y, \bigvee_{i \in \Gamma} M_1(x_i, y)) \ge \bigvee_{i \in \Gamma} S(y, M_1(x_i, y)) \ge \bigvee_{i \in \Gamma} x_i,$

 $i \in \Gamma M_1(x_i, y) \geq M_1(\bigvee_{i \in \Gamma} x_i, y).$

(6) By (2), they are easily proved.

(7) For each $x, y, z \in X$, $S(y, S(z, M_1(x, S(y, z)))) = S(S(y, z), M_1(x, S(y, z))) \geq x$ iff $S(z, M_1(x, S(y, z))) \geq M_1(x, y)$ iff $M_1(x, S(y, z)) > M_1(M_1(x, y), z)$. Since $S(S(y, z), M_1(M_1(x, y), z)) = S(y, S(z, M_1(M_1(x, y), z))) \geq S(y, M_1(x, y)) \geq$ $x, M_1(M_1(x, y), z) \geq M_1(x, S(y, z))$. Hence $M_1(M_1(x, y), z) = M_1(x, S(y, z))$. (8) Since $S(S(z, M_1(y, z)), M_1(x, y)) \geq S(y, M_1(x, y)) \geq x, S(M_1(y, z), M_1(x, y)) \geq$ $M_1(x, z)$. (9) Since $S(S(y, z), M_1(x, z)) = S(y, S(z, M_1(x, z))) \geq S(y, z),$ $M_1(x, z) > M_1(S(y, x), S(y, z)).$ (10) Since $S(M_1(y, z), M_1(x, y)) \geq M_1(x, z), M_1(x, y) \geq M_1(M_1(x, z), M_1(y, z)).$ (11) Since $S(x, \perp) = x$, by (LC), $M_1(x, x) \leq \perp$. Then $M_1(x, x) = \perp$. (12) Let $M_1(x, y) = \bot$. Then $y = S(y, \bot) = S(y, M_1(x, y)) \ge x$. Thus $x \le y$. If $x \leq y$, then $M_1(x, y) \leq M_1(y, y) = \bot$. Thus $M_1(x, y) = \bot$. ¤

Corollary 3.3. Let $(L, \vee, \wedge, S, M_2, \perp, \perp)$ be a right coresiduated lattice. For each $x, y, z, x_i, y_i \in L$, the following properties are hold.

- (1) If $y \le z$, then $M_2(x, z) \le M_2(x, y)$ and $M_2(y, z) \le M_2(z, x)$.
- (2) $S(M_2(x, y), y) \ge x$ and $S(x, M_2(y, z)) \ge M_2(S(x, y), z)$.
- (3) $S(\bigwedge_{i \in \Gamma} x_i, y) = \bigwedge_{i \in \Gamma} S(x_i, y).$

(4) $M_2(x, \bigwedge_{i \in \Gamma} y_i) \ge$ $\bigvee_{i \in \Gamma} M_2(x, y_i)$. If $S(x, \bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} S(x, y_i)$, the equality holds. $\ddot{}$

- $(5) M_2($ $i \in \Gamma} x_i, y$ = $\bigvee_{i \in \Gamma} M_2(x_i, y)$.
- (6) $M_2(x, \bigvee_{i \in \Gamma} y_i) \leq \bigwedge_{i \in \Gamma} M_2(x, y_i)$ and $M_2(x)$ λ $_{i\in\Gamma}\,x_i,y) \leq$ \mathbf{v} $_{i\in\Gamma} M_2(x_i, y)$.
- (7) $M_2(x, S(y, z)) = M_2(M_2(x, z), y)$.
- (8) $S(M_2(x, y), M_2(y, z)) \geq M_2(x, z)$.
- (9) $M_2(x, z) \geq M_2(S(x, y), S(z, y)).$
- (10) $M_2(x, y) \geq M_2(M_2(x, z), M_2(y, z)).$
- (11) $M_2(x,x) = \perp$.

$$
(12) \ x \leq y \ \text{iff} \ M_2(x,y) = \bot.
$$

Theorem 3.4. Let $(L, \vee, \wedge, S, M_1, M_2, \perp, \top)$ be a generalized coresiduated lattice. For each $x, y, z \in L$, the following properties (1) and (2) are hold.

- (1) $M_1(M_2(x, y), z) = M_2(M_1(x, z), y)$.
- (2) $M_1(y, z) > M_2(M_1(x, z), M_1(x, y))$ and $M_2(y, z) > M_1(M_2(x, z), M_2(x, y)).$

Let (n_1, n_2) be a pair of negations defined as $n_1(x) = M_1(\top, x)$ and $n_2(x) =$ $M_2(\top, x)$ for each $x \in X$. the following properties (3)-(6) are hold.

(3) $M_2(x, y) = M_1(n_2(y), n_2(x))$ and $M_1(x, y) = M_2(n_1(y), n_1(x))$ for each $x, y \in$ X_z

(4) $n_1(S(y, z)) = M_1(n_1(y), z)$. Moreover, $n_1(S(y, z)) = M_2(n_2(z), y)$

and $n_2(M_1(x, y)) = S(n_2(x), y)$ for each $x, y, z \in X$.

(5) $M_1(x, \perp) = M_2(x, \perp) = x$ for each $x \in X$. $\ddot{}$

(6) For each $k = 1, 2, n_k($ $i \in \Gamma$ x_i) = $\bigvee_{i \in \Gamma} n_k(x_i)$ and $n_k(x_i)$ $\ddot{}$ $i \in \Gamma} x_i) = n_k($ \mathbf{v} $_{i\in\Gamma}\,x_i)$ for each $x_i \in X$.

Proof. (1) Since

$$
S(z, S(M_1(M_2(x, y), z), y)) = S(S(z, M_1(M_2(x, y), z)), y)
$$

\n
$$
\geq S(M_2(x, y), y) \geq x,
$$

by (LC), $S(M_1(M_2(x, y), z), y) > M_1(x, z)$. Thus $M_1(M_2(x, y), z) > M_2(M_1(x, z), y)$. Since $S(S(z, S(M_2(M_1(x, z), y)), y) = S(z, S(M_2(M_1(x, z), y), y)) > S(z, M_1(x, z))$

 $\geq x, S(z, M_2(M_1(x, z), y)) \geq M_2(x, y).$ Thus $M_2(M_1(x, z), y) \geq M_1(M_2(x, y), z).$

(2) Since $S(M_1(y, z), M_1(x, y)) > M_1(x, z), M_1(y, z) > M_2(M_1(x, z), M_1(x, y)).$ Since $S(M_2(x, y), M_2(y, z)) \geq M_2(x, z), M_2(y, z) \geq M_1(M_2(x, z), M_2(x, y)).$

(3) By (2), $M_2(x, y) > M_1(M_2(\top, y), M_2(\top, x)) = M_1(n_2(y), n_2(x))$. By (2), $M_1(x, y) \geq M_2(M_1(\top, y), M_1(\top, x)) = M_2(n_1(y), n_1(x)).$

Moreover, $M_2(x, y) = M_2(n_1(n_2(x)), n_1(n_2(y))) \leq M_1(n_2(y), n_2(x))$ and $M_1(x, y)$ $= M_1(n_2(n_1(x)), n_2(n_1(y))) \leq M_2(n_1(y), n_1(x)).$

Thus, $M_2(x, y) = M_1(n_2(y), n_2(x))$ and $M_1(x, y) = M_2(n_1(y), n_1(x))$.

(4) By Theorem 3.2(7), $n_1(S(y, z)) = M_1(\top, S(y, z)) = M_1(M_1(\top, y), z) =$ $M_1(n_1(y), z)$. By Corollary 3.3(7), $n_1(S(y, z)) = M_2(\top, S(y, z)) = M_2(M_2(\top, z), y)$ $= M_2(n_2(z), y)$. Since $n_1(S(n_2(y), z)) = M_1(y, z)$, $S(n_2(y), z) = n_2(M_1(y, z))$.

(5) Since $n_1M_2(x, \perp) = S(\perp, n_1(x)) = n_1(x), M_2(x, \perp) = n_2(n_1(M_2(x, \perp)))$ $n_2(n_1(x))=x$. Since $n_2M_1(x, \perp)=S(n_2(x), \perp)=n_2(x), M_1(x, \perp)=n_1(n_2M_1(x, \perp))$ $= n_1(n_2(x)) = x.$ \mathbf{v}

(6) By Theorem 3.2(3,4) and Corollary 3.3(3,4), n_k (and Corollary 3.3(3,4), $n_k(\Lambda_i x_i) = \bigvee_i n_k(x_i)$ for each $k = 1, 2$. Since $\bigwedge_i x_i = n_2(n_1(\bigwedge_i x_i)) = n_2(\bigvee_i n_1(x_i)), \bigwedge_i n_2(x_i) = n_2(\bigvee_i n_1(n_2(x_i)))$ $= n_2(\bigvee_i x_i)$. Other cases are similarly proved.

 \Box

Theorem 3.5. Let $(L, \vee, \wedge, \top, \bot)$ be a bounded lattice and $S: L \times L \rightarrow L$ be a pseudo t-conorm.

(1) If $S(x, \bigwedge_{j \in J} y_i) = \bigwedge_{j \in J} S(x, y_j)$ for each $\{y_j\}_{j \in J}$. then the following statements (a), (b) and (c) are equivalent.

(a) If $y \le z$, then $M_1(y, x) \le M_1(z, x)$. Moreover, for all $x, y \in L$, $S(x, M_1(y, x)) \ge$ y and $y \geq M_1(S(x, y), x)$.

(b) $M_1(x, y) = \bigwedge \{ z \in L \mid S(y, z) \ge x \}.$

(c) $S(y, z) \geq x$ iff $z \geq M_1(x, y)$. $\frac{y}{\sqrt{2}}$

 (2) If $S($ $\sum_{i\in\Gamma} x_i, y) = \bigwedge_{i\in I} S(x_i, y)$ for each $\{x_i\}_{i\in I}$, then (e), (f) and (g) are equivalent.

(e) If $y \le z$, then $M_2(y, x) \le M_2(z, x)$. Moreover, for all $x, y \in L$, $S(M_2(y, x), x) \ge$ y and $x \geq M_2(S(x, y), y)$.

- (f) $M_2(x, y) = \bigwedge \{ z \in L \mid S(z, y) \ge x \}.$
- (g) $S(z, y) \geq x$ iff $z \geq M_2(x, y)$.

Proof. (1) (a) \Rightarrow (b). Put $P(x,y) = \bigwedge \{z \in L \mid S(y,z) \geq x\}$. By (a), since $S(y, M_1(x, y)) \geq x, P(x, y) \leq M_1(x, y).$

Suppose there exist $x, y \in L$ such that $P(x, y) \not\geq M_1(x, y)$. Then there exists $z \in L$ such that $z \not\geq M_1(x, y)$ and $S(y, z) \geq x$. By (a),

$$
z \ge M_1(S(y, z), y) \ge M_1(x, y).
$$

It is a contradiction. Hence $P(x, y) \geq M_1(x, y)$.

(b) \Rightarrow (c). Let $S(y, z) \geq x$. Then $z \geq M_1(x, y)$.

If $M_1(x, y) \le z$, then $S(y, z) \ge S(y, M_1(x, y)) = S(y, \lambda \{z_1 \in L \mid S(y, z_1) \ge z_2 \})$ x }) = $\bigwedge S(y, z_1) \geq x$.

 $(c) \Rightarrow$ (a). Since $S(y, z) \leq S(y, z)$, $M_1(S(y, z), y) \leq z$. Since $M_1(y, x) \leq M_1(y, x)$, $S(x, M_1(y, x)) \ge y$. If $y \ge z$, $S(x, M_1(y, x)) \ge y \ge z$. Hence $M_1(y, x) \ge M_1(z, x)$.

(2) (d) \Rightarrow (e). Put $Q(x, y) = \bigwedge \{z \in L \mid S(z, y) \ge x\}$. By (d), since $S(M_2(x, y), y)$ $\geq x, Q(x, y) \leq M_2(x, y).$

Suppose there exist $x, y \in L$ such that $Q(x, y) \not\geq M_2(x, y)$. Then there exists $z \in L$ such that $z \not\geq M_2(x, y)$ and $S(z, y) \geq x$. By (d),

$$
z \ge M_2(S(z, y), y) \ge M_2(x, y).
$$

It is a contradiction. Hence $Q(x, y) \geq M_2(x, y)$.

(e) \Rightarrow (f). Let $S(z, y) \geq x$. Then $z \geq M_2(x, y)$.

If $M_2(x, y) \le z$, then $S(z, y) \ge S(M_2(x, y), y) = S(y)$ \mathbf{v} ${z_2 \in L \mid S(z_2, y) \geq x}$ \mathbf{v} $S(z_2, y) \geq x.$

 $(f) \Rightarrow (d)$. Since $S(z, y) \leq S(z, y)$, $M_2(S(z, y), y) \leq z$. Since $M_2(y, x) \leq M_2(y, x)$, $S(M_2(y, x), x) \ge y$. If $y \ge z$, $S(M_2(y, x), x) \ge y \ge z$. Hence $M_2(y, x) \ge M_2(z, x)$. \Box

From Theorem 3.5, we can obtain the following corollary.

Corollary 3.6. Let $(L, \vee, \wedge, \top, \bot)$ be a bounded lattice and $S: L \times L \rightarrow L$ be a pseudo t-conorm.

 (1) If S($\frac{1}{\sqrt{2}}$ $\hat{f}_{i\in I}(x_i, y) = \bigwedge_{i\in I} S(x_i, y)$ for each $\{x_i\}_{i\in I}$ and we define $M_2(x, y) =$ \mathbf{v} $\{z \in L \mid S(z, y) \geq x\},\$ then $(L, \vee, \wedge, S, M_2, \perp, \perp)$ is a right coresiduated lattice.

(2) If $S(x, \bigwedge_{j \in J} y_i) = \bigwedge_{j \in J} S(x, y_j)$ for each $\{y_j\}_{j \in J}$ and we define $M_1 : L \times L \rightarrow$ L as

$$
M_1(x, y) = \bigwedge \{ z \in L \mid S(y, z) \ge x \}.
$$

Then $(L, \vee, \wedge, S, M_1, \perp, \top)$ is a left coresiduated lattice.

Example 3.7. (1) Define a map $S : [0, 1] \times [0, 1] \to [0, 1]$ as

$$
S(x,y) = \begin{cases} 1, & \text{if } x \ge 0.4, y \ge 0.7, \\ x \vee y, & \text{otherwise.} \end{cases}
$$

If $S(x, y) = 1$, then $x = 1$ or $y = 1$ and $x \ge 0.4, y \ge 0.7$. Thus, $S(S(x, y), z) =$ $1 = S(x, S(y, z)).$

If $S(x, y) < 1$ and $x \ge 0.4, z \ge 0.7$, then $S(S(x, y), z) = 1 = S(x, S(y, z))$.

If $S(x, y) < 1$ and $y < 0.7, z < 0.7$, then $S(S(x, y), z) = (x \vee y) \vee z = x \vee (y \vee z) =$ $S(x, S(y, z))$. Hence $S(S(x, y), z) = S(x, S(y, z))$ for each $x, y, z \in X$. Moreover, $(S2)$ and $(S3)$ are easily proved. Thus S is a pseudo t-conorm.

Since S($\frac{9}{4}$ $\lim_{i \in \Gamma} x_i, y) = \bigwedge_{i \in I} S(x_i, y),$ by Theorem 3.5, $M_2(x, y) = \bigwedge \{z \in [0, 1] \mid \Omega\}$ $S(z, y) \geq x$ such that \overline{a}

$$
M_2(x, y) = \begin{cases} 0.4, & \text{if } x > y, y \ge 0.7, \\ x, & \text{if } x > y, y < 0.7, \\ 0, & \text{if } x \le y. \end{cases}
$$

Moreover, $M_1(x, y) = \bigwedge \{ z \in [0, 1] \mid S(y, z) \geq x \}$ such that ٦.

$$
M_1(x, y) = \begin{cases} x \wedge 0.7, & \text{if } x > y, y \ge 0.4, \\ x, & \text{if } x > y, y < 0.4, \\ 0, & \text{if } x \le y. \end{cases}
$$

Define $n_1, n_2 : [0, 1] \to [0, 1]$ as

$$
n_1(x) = M_1(1, x) = \begin{cases} 0.7, & \text{if } 0.4 \le x < 1, \\ 1, & \text{if } x < 0.4, \\ 0, & \text{if } x = 1. \end{cases}
$$

$$
n_2(x) = M_2(1, x) = \begin{cases} 0.4, & \text{if } 0.7 \le x < 1, \\ 1, & \text{if } x < 0.7, \\ 0, & \text{if } x = 1. \end{cases}
$$

Since $n_2(n_1(0.6)) = n_2(0.7) = 0.4 \neq 0.6$, (n_1, n_2) is not a pair of negations.

(2) Define a map $S : [0,1] \times [0,1] \to [0,1]$ as

$$
S(x, y) = \begin{cases} 1, & \text{if } x \ge 0.4, \ y > 0.7, \\ x \vee y, & \text{otherwise.} \end{cases}
$$

By a similar way in (1) , S is a pseudo t-conorm.

Since S($\ddot{}$ $(x, y) = \bigwedge S(x_i, y), M_2(x, y) = \bigwedge \{z \in [0, 1] \mid S(z, y) \geq x\}$ such that

$$
M_2(x, y) = \begin{cases} 0.4, & \text{if } x > y, y > 0.7, \\ x, & \text{if } x > y, y \le 0.7, \\ 0, & \text{if } x \le y. \end{cases}
$$

By Theorem 3.5, $(L, \vee, \wedge, S, M_2, \bot, \top)$ be a right coresiduated lattice.

It follows $1 = \bigwedge_{n \in N} S(0.5, 0.7 + \frac{1}{n}) \neq S(0.5,$ $\bigwedge_{n\in\mathbb{N}}0.7+\frac{1}{n}$ = $S(0.5,0.7)$ = 0.5 \vee $0.7 = 0.7$. Since $M_1(0.8, 0.5) = \bigwedge \{z \in [0, 1] \mid S(0.5, z) \ge 0.8\} = 0.7, M_1(0.8, 0.5) \le$ 0.7 but $S(0.5, 0.7) = 0.7 \not\geq 0.8$. Hence $(L, \vee, \wedge, S, M_1, \perp, \top)$ is not a left coresiduated lattice.

(3) Define a map $S : [0,1] \times [0,1] \to [0,1]$ as

$$
S(x,y) = \begin{cases} 1, & \text{if } x > 0.4, \ y \ge 0.7, \\ x \vee y, & \text{otherwise.} \end{cases}
$$

By a similar way in (1), S is a pseudo t-conorm. Since $S(x, \bigwedge y_i) = \bigwedge S(x, y_i)$, $M_1(x, y) = \bigwedge \{ z \in [0, 1] \mid S(y, z) \geq x \}$ such that

$$
M_1(x, y) = \begin{cases} x \wedge 0.7, & \text{if } x > y, y > 0.4, \\ x, & \text{if } x > y, y \le 0.4, \\ 0, & \text{if } x \le y. \end{cases}
$$

By Theorem 3.5, $(L,\vee,\wedge,S,M_1,\bot,\top)$ is a left coresiduated lattice.

It follows $1 = \bigwedge_{n \in N} S(0.4 + \frac{1}{n}, 0.8) \neq S($ $\bigwedge_{n\in\mathbb{N}}0.4 + \frac{1}{n}, 0.8\big) = S(0.4, 0.8) =$ 0.4 \vee 0.8 = 0.8. Since $M_2(0.9, 0.8) = \bigwedge \{z \in [0, 1] \mid S(z, 0.8) \ge 0.9\} = 0.4$, $M_2(0.9, 0.8) = 0.4$ but $S(0.4, 0.8) = 0.8 \ge 0.9$. Hence $(L, \vee, \wedge, S, M_2, \perp, \perp)$ is not a right coresiduated lattice.

Theorem 3.8. Let $(L, \vee, \wedge, \top, \bot)$ be a bounded lattice, $S: L \times L \rightarrow L$ be a pseudo tconorm and (n_1, n_2) a pair of negations. For $i = \{1, ..., 4\}$, we define $M_i : L \times L \to L$

as follows;

$$
M_1(x, y) = n_2S(n_1(x), y), M_2(x, y) = n_1S(y, n_2(x)),
$$

\n
$$
M_3(x, y) = n_2S(y, n_1(x)), M_4(x, y) = n_1S(n_2(x), y),
$$

\n
$$
M_5(x, y) = n_2S(n_1(x), n_1n_1(y)),
$$

\n
$$
M_6(x, y) = n_1S(n_2n_2(y), n_2(x)).
$$

The the following properties are hold.

(1) For each $y \in Y$, $n_1(y) = M_2(1, y) = M_4(1, y) = M_5(1, y)$ and $n_2(y) =$ $M_1(1, y) = M_3(1, y) = M_6(1, y).$

(2) For each $x, y, z \in L$,

$$
M_i(M_i(x, z), y) = M_i(x, S(y, z)), i \in \{2, 3\}.
$$

Moreover, let $x \leq y$ iff $M_i(x, y) = \bot, i \in \{2, 3\}$. Then $(L, \vee, \wedge, S, M_i, \bot, \top)$ is a left coresiduated lattice such that $S(x, y) \geq z$ iff $x \geq M_i(z, y), i \in \{2, 3\}.$

(3) For each $x, y, z \in L$,

$$
M_j(M_j(x, y), z) = M_j(x, S(y, z)), j \in \{1, 4\}.
$$

Moreover, let $x \leq y$ iff $M_i(x, y) = \bot, j \in \{1, 4\}$. Then $(L, \vee, \wedge, S, M_i, \bot, \top)$ is a right coresiduated lattice such that $S(x, y) \geq z$ iff $y \geq M_i(z, x), j \in \{1, 4\}.$

(4) Let $x \leq y$ iff $M_2(x, y) = \bot$ iff $M_1(x, y) = \bot$. Then $(L, \vee, \wedge, S, M_2, M_1, \bot, \top)$ is a generalized coresiduated lattice with $M_2(1, M_1(1, y)) = M_1(1, M_2(1, y)) = y$ for each $y \in L$.

(5) Let $x \leq y$ iff $M_3(x, y) = \perp$ iff $M_4(x, y) = \perp$. Then $(L, \vee, \wedge, S, M_3, M_4, \perp, \perp)$ is a generalized coresiduated lattice with $M_3(1, M_4(1, y)) = M_4(1, M_3(1, y)) = y$ for each $y \in L$.

(6) Let $x \leq y$ iff $M_3(x, y) = \bot$ iff $M_1(x, y) = \bot$. Then $(L, \vee, \wedge, S, M_3, M_1, \bot, \top)$ is a generalized co-residuated lattice such that $M_3(1, M_1(1, y)) = M_1(1, M_3(1, y)) =$ $n_2n_2(y)$ for each $y \in L$.

(7) Let $x \leq y$ iff $M_2(x, y) = \perp$ iff $M_4(x, y) = \perp$. Then $(L, \vee, \wedge, S, M_2, M_4, \perp, \perp)$ is a generalized co-residuated lattice with $M_2(1, M_4(1, y)) = M_4(1, M_2(1, y)) = n_1n_1(y)$ for each $y \in L$.

(8) Let $S(n_1n_1(x), n_1n_1(x)) = n_1n_1(S(x, y))$ for each $x, y \in X$. Then (M_2, M_5) is a pair with

$$
M_2(M_2(x, z), y) = M_2(x, S(y, z)),
$$

\n
$$
M_5(M_5(x, y), z) = M_5(x, S(y, z)),
$$

\n
$$
M_2(1, M_4(1, y)) = M_4(1, M_2(1, y)) = y.
$$

Moreover, let $x \leq y$ iff $M_2(x, y) = \bot$ iff $M_5(x, y) = \bot$. Then $(L, \vee, \wedge, S, M_2, M_5, \bot, \top)$ is a generalized coresiduated lattice such that $S(x, y) \ge z$ iff $x \ge M_2(z, y)$ iff $y \geq M_5(z,x)$.

(9) Let $S(n_2n_2(x), n_2n_2(y)) = n_2n_2(S(x, y))$ for each $x, y \in X$. Then (M_6, M_4) is a pair with

$$
M_6(M_6(x, z), y) = M_6(x, S(y, z)),
$$

\n
$$
M_4(M_4(x, y), z) = M_4(x, S(y, z)),
$$

\n
$$
M_6(1, M_4(1, y)) = M_4(1, M_6(1, y)) = y
$$

Moreover, let $x \leq y$ iff $M_4(x, y) = \bot$ iff $M_6(x, y) = \bot$. Then $(L, \vee, \wedge, S, M_6, M_4, \bot, \top)$ is a generalized coresiduated lattice such that $S(x, y) \ge z$ iff $x \ge M_6(z, y)$ iff $y \geq M_4(z,x)$.

Proof. (1) For each $y \in Y$, $M_2(1, y) = n_1S(y, 0) = n_1(y) = M_4(1, y) = M_5(1, y) =$ $n_2S(0, n_1n_1(y))$. Other cases are similarly proved.

(2) For each $x, y, z \in X$,

$$
M_2(M_2(x, z), y) = M_2(n_1(S(z, n_2(x)), y)
$$

= $n_1S(y, S(z, n_2(x))) = n_1S(S(y, z), n_2(x)) = M_2(x, S(y, z)),$

$$
M_3(M_3(x, z), y) = M_3(n_2(S(z, n_1(x)), y)
$$

= $n_2S(y, S(z, n_1(x))) = n_2S(S(y, z), n_1(x)) = M_3(x, S(y, z)).$

Since $M_i(z, S(x, y)) = \perp$ iff $M_i(M_i(z, y), x) = \perp$ for each $i \in \{2, 3\}$, by Theorem 3.2(12), $z \leq S(x, y)$ iff $M_i(z, y) \leq x$. Hence $(L, \vee, \wedge, S, M_i, \perp, \top)$ is a left coresiduated lattice

(3) For each $x, y, z \in X$,

$$
M_1(M_1(x, y), z) = M_1(n_2(S(n_1(x), y), z)
$$

= $n_2S(S(n_1(x), y), z) = n_2S(n_1(x), S(y, z)) = M_1(x, S(y, z)),$

$$
M_4(M_4(x, y), z) = M_4(n_1(S(n_2(x), y), z)
$$

= $n_1 S(S(n_2(x), y), z) = n_1 S(n_2(x), S(y, z)) = M_4(x, S(y, z)).$

Since $M_i(z, S(x, y)) = \perp$ iff $M_i(M_i(z, x), y) = \perp$ for each $j \in \{1, 4\}$, by Theorem 3.2(12), $z \leq S(x, y)$ iff $M_i(z, x) \leq y$. Hence $(L, \vee, \wedge, S, M_i, \perp, \top)$ is a right coresiduated lattice.

 $(4),(5),(6)$ and (7) are easily proved from $(1)-(3)$.

(8) It follows from

$$
M_5(M_5(x, y), z) = M_5(n_2(S(n_1(x), n_1n_1(y)), z)
$$

= $n_2S(S(n_1(x), n_1n_1(y)), n_1n_1(z))$
= $n_2S(n_1(x), S(n_1n_1(y), n_1n_1(z)))$
 $(S(n_1n_1(y), n_1n_1(z)) = n_1n_1(S(y, z)))$
= $n_2S(n_1(x), n_1n_1(S(y, z))))$
= $M_5(x, S(y, z)).$

(9) It follows from

$$
M_6(M_6(x, z), y) = M_6(n_1(S(n_2n_2(z), n_2(x)), y)
$$

= $n_1S(n_2n_2(y), S(n_2n_2(z), n_2(x)))$
= $n_1S(S(n_2n_2(y), n_2n_2(z)), n_2(x)))$
 $(S(n_2n_2(y), n_2n_2(z)) = n_2n_2(S(y, z)))$
= $n_1S(n_2n_2(S(y, z)), n_2(x)))$
= $M_6(x, S(y, z)).$

 \Box

Example 3.9. Put $L = \{(x, y) \in R^2 \mid (0, 1) \le (x, y) \le (2, 3)\}\$ where $(0, 1)$ is the bottom element and $(2, 3)$ is the top element where

$$
(x_1, y_1) \le (x_2, y_2) \Leftrightarrow y_1 < y_2 \text{ or } y_1 = y_2, x_1 \le x_2.
$$

A map $S: L \times L \rightarrow L$ is defined as

$$
S((x_1, y_1), (x_2, y_2)) = (x_2 + x_1y_2, y_1y_2) \wedge (2, 3).
$$

(1) (S1) $S(S((x_1,y_1),(x_2,y_2)),(x_3,y_3)) = S((x_1,y_1),S((x_2,y_2),(x_3,y_3)))$ from: $S(S((x_1,y_1),(x_2,y_2)),(x_3,y_3))$ $= S((x_2 + x_1y_2, y_1y_2) \wedge (2, 3), (x_3, y_3))$ $=(x_3 + x_2y_3 + x_1y_2y_3, y_1y_2y_3) \wedge (2,3).$ $S((x_1,y_1),S((x_2,y_2),(x_3,y_3)))$ $= S((x_1, y_1), (x_3 + x_2y_3, y_2y_3) \wedge (2, 3))$ $=(x_3 + x_2y_3 + x_1y_2y_3, y_1y_2y_3) \wedge (2,3).$

(S2) If $(x_1, y_1) \le (x_2, y_2)$, then $y_1 < y_2$ or $y_1 = y_2, x_1 \le x_2$. Thus $S((x_1, y_1), (x_3, y_3)) = (x_3 + x_1y_3, y_1y_3) \wedge (2, 3)$ $\leq (x_3 + x_2y_3, y_2y_3) \wedge (2, 3) = S((x_2, y_2), (x_3, y_3)).$

(S3) For each $(x_1, y_1) \in L$,

$$
S((x_1, y_1), (0, 1)) = (x_1, y_1) = S((0, 1), (x_1, y_1)).
$$

Then S is a pseudo t-conorm but not t-conorm because

$$
(2,2) = S((-1,2),(3,1)) \neq S((3,1),(-1,2)) = (5,2).
$$

(2) We define a pair (n_1, n_2) as follows

$$
n_1(x, y) = (2 - \frac{3x}{y}, \frac{3}{y}), \ \ n_2(x, y) = (\frac{2-x}{y}, \frac{3}{y}).
$$

Then (n_1, n_2) is a pair of negations from:

$$
n_1(n_2(x, y)) = (x, y), \ \ n_2(n_1(x, y)) = (x, y).
$$

(3)

$$
M_1((x_1, y_1), (x_2, y_2)) = n_2S(n_1(x_1, y_1), (x_2, y_2))
$$

\n
$$
= n_2S((2 - \frac{3x_1}{y_1}, \frac{3}{y_1}), (x_2, y_2))
$$

\n
$$
= (\frac{(2-x_2)y_1}{3y_2} + \frac{3x_1 - 2y_1}{3}, \frac{y_1}{y_2}) \vee (0, 1),
$$

\n
$$
M_1((-1, 2), (-5, 2)) = (0, 1), (-1, 2) \nleq (-5, 2).
$$

\n
$$
M_2((x_1, y_1), (x_2, y_2)) = n_1S((x_2, y_2), n_2(x_1, y_1))
$$

\n
$$
= n_1S((x_2, y_2), (\frac{2-x_1}{y_1}, \frac{3}{y_1}))
$$

\n
$$
= (2 - \frac{2-x_1+3x_2}{y_2}, \frac{y_1}{y_2}) \vee (0, 1),
$$

\n
$$
M_2((4, 2), (3, 2)) = (0, 1), (4, 2) \nleq (3, 2),
$$

\n
$$
M_3((x_1, y_1), (x_2, y_2)) = n_2S((x_2, y_2), n_1(x_1, y_1))
$$

\n
$$
= n_2S((x_2, y_2), (2 - \frac{3x_1}{y_1}, \frac{3}{y_1})) = n_2(2 - \frac{3x_1}{y_1} + \frac{3x_2}{y_1}, \frac{3y_2}{y_1})
$$

\n
$$
= (\frac{x_1}{y_2} - \frac{x_2}{y_2}, \frac{y_1}{y_2}) \vee (0, 1),
$$

\n
$$
M_3((x_1, y_1), (x_2, y_2)) = (0, 1) \text{ iff } (x_1, y_1) \leq (x_2, y_2),
$$

By Theorem 3.8(2), $(L, \vee, \wedge, S, M_3, \perp, \top)$ is a left coresiduated lattice such that $S((x_1,y_1),(x_2,y_2)) \ge (x_3,y_3)$ iff $(x_1,y_1) \ge M_3((x_3,y_3),(x_2,y_2)).$

$$
M_4((x_1, y_1), (x_2, y_2)) = n_1 S(n_2(x_1, y_1), (x_2, y_2))
$$

= $n_1 S((\frac{2-x_1}{y_1}, \frac{3}{y_1}), (x_2, y_2)) = n_1(x_2 + (\frac{2-x_1}{y_1})y_2, \frac{3y_2}{y_1})$
= $(\frac{-x_2y_1}{y_2} + x_1, \frac{y_1}{y_2}) \vee (0, 1),$
 $M_4((x_1, y_1), (x_2, y_2)) = (0, 1)$ iff $(x_1, y_1) \le (x_2, y_2)$.

By Theorem 3.8(3), $(L, \vee, \wedge, S, M_4, \perp, \perp)$ is a right coresiduated lattice such that $S((x_1,y_1),(x_2,y_2)) \ge (x_3,y_3)$ iff $(x_2,y_2) \ge M_4((x_3,y_3),(x_1,y_1))$. Moreover, $(L,\vee,\wedge,$ $S, M_3, M_4, \perp, \perp$ is a generalized coresiduated lattice

(4) Since $n_1(n_1(x, y)) = (3x - 2y + 2, y),$ $n_1n_1S((x_1,y_1),(x_2,y_2)) = n_1n_1(x_2+x_1y_2,y_1y_2)$ $=(3x_2+3x_1y_2-2y_1y_2+2,y_1y_2)=S(n_1n_1(x_1,y_1),n_1n_1(x_2,y_2)).$ $M_5((x_1,y_1),(x_2,y_2)) = n_2S(n_1(x_2,y_2),n_1n_1(x_2,y_2))$ $= n_2S((2-\frac{3x_1}{y_1}))$ $\frac{3x_1}{y_1}, \frac{3}{y_1}$ $(\frac{3}{y_1}),(\frac{3x_2-2y_2+2}{y_2}))$ $= n_2(3x_2 - 2y_2 + 2 + (2 - \frac{3x_1}{y_1}))$ $\frac{3x_1}{y_1}$) y_2 , $\frac{3y_2}{y_1}$ $\frac{3y_2}{y_1}\big)$ $=\left(\frac{-x_2y_1}{y_2}+x_1,\frac{y_1}{y_2}\right)$ $\frac{y_1}{y_2}) \vee (0,1)$ $=M_4((x_1,y_1),(x_2,y_2)).$

(5) Since
$$
n_2(n_2(x, y)) = (\frac{1}{3}(x + 2y - 2), y),
$$

\n $n_2n_2(S(x_1, y_1), (x_2, y_2)) = n_2n_2(x_2 + x_1y_2, y_1y_2)$
\n $= (3x_2 + 3x_1y_2 - 2y_1y_2 + 2, y_1y_2))$
\n $= S(n_2n_2(x_1, y_1), n_2n_2(x_2, y_2)).$
\n $M_6((x_1, y_1), (x_2, y_2)) = n_1S(n_2n_2(x_2, y_2), n_2(x_1, y_1))$
\n $= n_1S((\frac{x_2+2y_2-2}{3}, y_2), (\frac{2-x_1}{y_1}, \frac{3}{y_1}))$
\n $= n_1(\frac{-x_1+x_2+2y_2}{y_1}, \frac{3y_2}{y_1})$
\n $= (\frac{x_1}{y_2} - \frac{x_2}{y_2}, \frac{y_1}{y_2}) \vee (0, 1) = M_3((x_1, y_1), (x_2, y_2)).$

REFERENCES

- 1. R. Bělohlávek: Fuzzy Relational Systems. Kluwer Academic Publishers, New York, 2002. https://doi.org/10.1007/978-1-4615.0633.1
- 2. _____: Fuzzy Galois connection. Math. Log. Quart. 45 (2000), 497-504. https://doi. org/10.1002/malq.19990450408
- 3. $\frac{1}{2001}$: Lattices of fixed points of Galois connections. Math. Logic Quart. 47 (2001), 111-116. https://doi.org/10.1002/1521-3870(200101)47-1
- 4. P. Flonder, G. Georgescu & A. Iorgulescu: Pseudo-t-norms and pseudo-BL-algebras. Soft Computing 5 (2001), 355-371. https://doi.org/10.1007/s005000100137
- 5. G. Georgescu & A. Popescue: Non-commutative Galois connections. Soft Computing 7 (2003), 458-467. https://doi.org/10.1007/s00300500-003-0280-4
- 6. $\frac{1}{100}$: A. Popescue, Non-commutative fuzzy structures and pairs of weak negations. Fuzzy Sets and Systems 143 (2004), 129-155. https://doi.org/10.1016/j.fss. 2003.06.004
- 7. P. H´ajek: Metamathematices of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, 1998. https://doi.org/10.1007/978-94-011-5300-3
- 8. U. Höhle & S.E. Rodabaugh: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory. The Handbooks of Fuzzy Sets Series 3, Kluwer Academic Publishers, Boston, 1999. https://doi.org/10.1007/978-1-4615-5079-2-6
- 9. Q. Junsheng & Hu. Bao Qing: On $(\odot, \&)$ -fuzzy rough sets based on residuated and co-residuated lattices. Fuzzy Sets and Systems 336 (2018), 54-86. https://doi.org/ 10.1016/j.fss.2017.07.010
- 10. Y.H. Kim & Ju-Mok Oh: Fuzzy concept lattices induced by doubly distance spaces. Fuzzy Sets and Systems 473 (2023), 1-18. https://doi.org/10.1016/j.fss.2023. 108703
- 11. J.M. Ko & Y.C. Kim: Bi-closure systems and bi-closure operators on generalized residuated lattices. Journal of Intelligent and Fuzzy Systems 36 (2019), 2631-2643. https:// doi.org/10.3233/JIFS-18493

- 12. : Various operations and right completeness in generalized residuated lattices. Journal of Intelligent and Fuzzy Systems 40 (2021), 149-164. https://doi.org/10. 3233/JIFS-190424
- 13. J.M. Oh & Y.C. Kim: Various fuzzy connections and fuzzy concepts in complete coresiduated lattices. Int. J. Approx. Reasoning 142 (2022), 451-468. https://doi.org/ 10.1016/j-ijar.2021.12.018
- 14. E. Turunen: Mathematics Behind Fuzzy Logic. A Springer-Verlag Co., 1999. https:// doi.org/10.1108/k.2001.30.2.216.4
- 15. M. Ward & R.P. Dilworth: Residuated lattices. Trans. Amer. Math. Soc. 45 (1939), 335-354. https://doi.org/10.1007/978-1-4899-3558.8

Professor: Mathematics Department, Gangneung-Wonju National University, Gangneung, 25457, Korea Email address: jumokoh@gwnu.ac.kr