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MODELLING MONTHLY RAINFALL IN THE CASE

OF EXCESSIVE ZEROS

Hamid Ghorbani

Abstract. In the frequency analysis of rainfall amounts for arid and semi-arid
regions, it is common to observe zero values for dry days. Since continuous distribu-
tions cannot describe such data, a discrete-continuous mixture version of standard
distributions is defined to model the data. In this paper, the zero-adjusted versions
of several distributions such as gamma, inverse Gaussian, log-normal, Weibull, log-
logistic, generalized gamma, and generalized inverse Gaussian were fitted to monthly
rainfall. The models were evaluated using a combination of the K-S test and AIC
criteria, which indicated that the zero-adjusted gamma distribution provided the
most satisfactory fit to the data.

1. Introduction

The frequency analysis of hydrological variables, generally defined as the quan-

tification of the expected number of occurrences of an event of a certain magnitude,

is perhaps the first and most common application of probability and statistics in the

field of water resources engineering. In summary, the purpose of frequency analysis

methods performed on a sample of observed data is to estimate the probability that

a random variable is equal to or greater than a given quantity. Note that there are

two types of approaches in the analysis of hydrological data, namely the analysis

based on the data of each (local) station and the regional analysis. If rainfall data

are only available for one station, the frequency analysis, the so-called at-station (or

local) analysis method, is applied. Otherwise, if rainfall observations are recorded

at different stations in a region and these data are analyzed together, the so-called

regional frequency analysis is applied [18]. Regarding the type of data considered in

this paper, the station method has been used to find the best probability distribu-

tion for the monthly rainfall in one of the hydrometric stations of the Zayanderud
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catchment over a period of 49 years from 1970 to 2018. Statistical modelling of

such historical and measured hydrological data allows us to simplify the probabilis-

tic prediction of future rainfall with the desired confidence. In fact, the inherent

correlation in time series data will help us to predict the future based on historical

data. In particular, the primary goal of frequency analysis is to relate the proba-

bility of occurrence of extreme events to the frequency of their occurrence by using

the statistical distributions [12].

Modelling rainfall data can be distinguished into two parts: rainfall occurrence

[10] and rainfall amount [7], [14]. A model of rainfall occurrence is a model that

provides a sequence of dry and wet time, while a model of rainfall amounts simulates

the amount of rainfall occurred in a desired time interval. Many studies have been

carried out to model rainfall using standard distributions such as Gamma, general-

ized Pareto, Gumbel, Log-Normal, Pearson Type III, Log-Pearson Type III, Weibull,

etc. to model the amount of rainfall in humid areas where the data have a right-

skewed positive behavior or considering a large time scale for which the true zeros

rainfall has no chance, [16], [23]. However, considering only such situations, does

not follow the nature of rainfall where there are time intervals that do not rain at

all. However, in many biometric, ecological or hydrological situations, it is common

to observe semi-continuous variables with true zeros and positive continuous values.

For example, it is common to find a large proportion of zeros in rainfall data sets in

arid and semi-arid regions (e.g. on daily, monthly or seasonal scales). For this type

of data, it is mathematically impossible to fit standard distributions with positive

support by maximum likelihood methos, since taking the logarithmic transforma-

tion of the vector containing zero values is not allowed. On the other hand, ignoring

zeros is also a bad idea, as it makes it impossible to predict the probability of zero

and leads to poor inference of the other parameters. To overcome this problem, the

assumed probability distributions are updated by adding a zero-adjusted parameter

to the distribution to account for the extra zeros in the data.

In this paper, after introducing some zero-adjusted probability distributions, they

are used to model the rainfall data in the case of excessive zeros. To estimate the

parameters by the maximum likelihood method, the gamlss.inf package in the R

statistical software was implemented, [5].
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2. Mixed Random Variables

Mixed random variable Y is a mixed variable (continuous-discrete) whose distri-

bution is a mixture of continuous and discrete distribution with supports equal to

R1 and R2 respectively. The density function of Y has the following form [15]:
∫

R1

gY (y) +
∑

R2

gY (y) = 1.

The mixed distributions that we encounter in gamlss.inf package are those which

are either zero-inflated or zero-adjusted ones. The zero-adjusted version of the den-

sity function, fX(.), having a positive support, is:

(1) gY (y) =

{

ω, y = 0

(1− ω)fX(y), y > 0,

in which fX(.) has a positive skew [13] and 0 < ω < 1. Note that the following

relations hold for the mean and variance of the gY distribution, [22]:

Eg(Y ) = (1− ω)Ef (Y ), V arg(Y ) = (1− ω)V arf (Y ) + ω(1− ω)Ef (Y ).

For example, suppose the random variable X has a gamma density function with

parameters α = 1

σ2 and λ = µσ2 and the following density function:

fX(x) =
y

1

σ2
−1

e
−y

σ2µ

Γ( 1

σ2 )(σ2µ)
1

σ2

, x > 0;µ, σ > 0.

The density function of the random variable Y , which has a zero-adjusted gamma

distribution with parameters µ, σ and ω, shown as Y ∼ ZAGA(µ, σ, ω), is:

gY (y) =











ω y = 0

(1− ω)
y

1

σ2
−1

e
−y

σ2µ

Γ( 1

σ2 )(σ2µ)
1

σ2

y > 0

Similarly, the other families of zero adjusted distributions can be generated, for

example the zero adjusted inverse Gaussian (ZAIG), log-normal (ZALN), Weibull

(ZAWEI), log-logistic (ZALLG), generalized gamma (ZAGG), generalized inverse Gauss-

ian (ZAGIG) distributions, all of which were fitted to the rainfall data in this study.

3. Statistical Distributions in R Software

3.1. Common distributions Fitting distributions to data is one of the most com-

mon tasks in statistics and involves choosing the appropriate probability distribution
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to model the random variable and estimating the parameter for that distribution.

The statistical package fitdistrplus contains commands for fitting the distribu-

tions defined in the core of the software R to a set of data using the maximum likeli-

hood method, [4]. These distributions cover a wide range of all common probability

distributions in statistics. In special cases, if we want to fit another distribution

that is only defined in a specific statistical package, we can use the programming

features in order to fit it using the capabilities of the fitdistrplus package. These

capabilities, in addition to estimating the distribution parameters and calculating

the standard error of the estimates, include the Kolmogorov-Smirnov goodness-of-fit

test and useful goodness-of-fit diagrams.

3.2. Mixed distributions The R package gamlss [24], at the moment, supports

two distributions namely the zero-adjusted gamma and the zero-adjusted inverse

normal distributions. Using the capabilities of the package gamlss.inf, we can

create the zero-adjusted version of the existing distributions with positive support

(0,∞), like log-normal. On the other hand, for example the zero-adjusted log-

normal has a total of three parameters, two of which are related to the log-normal

distribution and the other one the probability of taking zero value. In practice,

for complex data sets, for the part of the data that lies on a positive real line,

we may need a distribution with more than two or three parameters to properly

capture the variation in the data. For situations like this, we may create a four

parameter distribution using the existing distributions with a support on (−∞,∞)

in two steps, first by taking an exponential transformation or left truncating at zero,

a positive value random variable is created. Then using the facilities of the package

gamlss.inf, a parameter ω, accounts the excessive zero-value observations, is added

to the resulted density function in the first step, which has now a positive support,

to get finally a new zero-adjusted distribution which by default was not included in

gamlss.inf package. In this way, depending on the behavior of the data at hand, any

common real valued density function, available in any R package, could be converted

by the researcher to a desired zero-adjusted one, then statistical inference for it,

would be done using the facilities of the fitdistrplus and gamlss.inf packages.

4. Fitting Distribution to Rainfall Data

The common practice for choosing the appropriate distribution for fitting to

rainfall data is first, selecting a number of parametric families of distributions as
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candidate ones then fitted them to data one after another. Afterward, based on

appropriate goodness-of-fit test, any single fitted distributions are assigned into two

categories, either it fits data successfully or fails to fit. Finally, base on a goodness-of-

fit criterion, the best fitted candidate, among those fitted successfully, is determined.

It is worth mentioning that, due to nature of the data, there is no guarantee that

the best selected distribution would adequately model the upper tail of the data.

Because this part of the data controls both the magnitude and frequency of extreme

events. On the other hand, all fitting methods are biased against the tail since only

a very small fraction of the experimental data belongs to the tail (unless a very large

sample is available) and the values obtained as estimates of the model parameters

reflects, more or less, the ability of model to describe the majority of data belong

to the body of the distribution, not the minor part belong to tail of distribution. In

other words, this model best describes a large part of the data, not the tail of the

data. In application, this type inefficiency of the model to describe extreme values

causes inappropriate consequences in hydrological designs [19].

The Normal, log-normal, Gumbel, gamma, Pearson type III, log-Pearson type III,

Weibull distributions are among the most important and common probability distri-

butions used in hydrology, [6], [11]. However, the process of choosing an appropriate

density function, to best describe the data, among the numerous available mod-

els then fitting it has always been a challenge. In the following, the April rainfall

records for Ghale Shahrokh station, which belongs to upstream Zayanderud basin,

over a period of 49 years from 1970 to 2018 has been considered. When our aim

is to model the monthly rainfall, our data include just the rainfall data correspond

to a certain month of different years. The reason is that, the random mechanism

governing rainfall, for example, in March is not the same as in July. The five point

summary statistics for the data (in mm) are min=0, 1st Qu.=30, median=44, 3rd

Qu.=80 and max=166.50, where the maximum rainfall was recorded on 2017.

It is worth mentioning that for mixed distribution in (1), given a random sample

X1,X2, · · · ,Xn that containing n−m zeroes (dry days), the likelihood of the random

sample with parameter w and θ is:

L(ω, θ|x) = ωn−m(1− ω)m
m
∏

i=1

fxi
(θ).

For obtaining the maximum likelihood estimates (MLEs) of the parameters the

logarithm of L(ω, θ|x) which is a nonlinear equation of the parameters need to be
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Figure 1. The plots are describing different aspects of the April rainfall records
for Ghale Shahrokh station over a period of 49 years from 1970 to 2018.

maximized using the numerical iterative box-constrained optimization routines, [20].

The MLE of ω does not depend on the form of f(.) and is always given by ω̂ = n−m
n

,

i.e. the proportion of zeros observed in the data.

4.1. Test of randomness Autocorrelation functions are usually used to visually

check the randomness of a time series. If the time series is random, we expect that all

autocorrelations are assumed to be zero for each time lag. The Ljung-Box test is used

for testing the null hypothesis that the autocorrelations of a stochastic process for

different time delays are all zero. This test is widely used in econometrics and other

applications of time series analysis [3]. In addition the package randtests provides

several non-parametric tests for the randomness of a sequence of observations, among

which we can mention the Run test and the Bartels rank test [1]. For the observed

data, the randomness assumption is not rejected based on the Bartels rank test at

the 0.05 level (statistic=-0.24, n=49, p-value=0.81). Figure 1 shows the time series

plot, the sample autocorrelation function (ACF), the histogram and the box plot for

the data. The ACF plot exhibits no significant autocorrelation in assumed lags.
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4.2. The results of fitting the zero-adjusted distributions Table 1 shows

the result of fitting the zero-adjusted gamma (ZAGA), inverse Gaussian (ZAIG), log-

normal (ZALN), Weibull (ZAWEI), log-logistic (ZALLG), generalized gamma (ZAGG) and

generalized inverse Gaussian (ZAGIG) distributions, respectively. The table displays

the maximum likelihood estimates of the parameters and, the Kolmogorov-Smirnov

(K-S) goodness of fit test statistic and its corresponding p-value, along with the

Akaike information criterion (AIC) for each fitted distribution. For the fitted models

the corresponding standard errors of the estimated parameters have been displayed.

Reporting the standard errors is necessary for measuring the accuracy of the esti-

mates of the parameters and testing their significance. In this study, a combination

of the K-S test and AIC has been utilized to evaluate the degree to which different

models fit the observed data. The null hypothesis for the K-S test at the significance

level of 0.05 determines how likely is each parametric model to describe the rainfall

data for the selected station. The KS test statistic quantifies the distance between

the empirical cumulative distribution function and the reference cumulative distribu-

tion functions, which are subjected for fitting to the data under the null hypothesis.

The null hypothesis is rejected if the corresponding p-value of the K-S test is less

than the pre-assumed significance level. Regarding the reported p-values in Table

1, all distributions fit the data well. The relative goodness of fit of different models

accepted by the K-S test are further compared with the AIC, an estimator of pre-

diction error. The equation for AIC is calculated as AIC = −2 log
(

L(ω̂, θ̂|x)
)

+ 2k,

where L̂(.|x) is the likelihood function of the fitted model for the observed sample

and k is the number of estimated parameters in the model. It balances the trade-off

between maximum likelihood estimate of the selected parametric cdf and complexity

based on the number of parameters. Thus, allowing us to compare and choose the

most appropriate parametric model for the data. Thus, AIC provides a means for

model selection [21]. Given a collection of models for the data, estimates the quality

of each model, relative to each of the other models. The preferred model is the one

with the minimum AIC value.

In Table 1, we find the best fitting model is the zero-adjusted gamma distribution

(ZAGA) with the lowest AIC value of 480.12. One of the main advantages of AIC is

that it is easy to calculate and apply, as it only requires the likelihood function and

the number of parameters of the model. AIC is asymptotically effective and unbi-

ased since the test is based on the maximum likelihood function and if the sample

size is sufficiently larger than 30, the test will yield fairly accurate result [17]. The
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Table 1. The estimated parameters, the corresponding standard errors
and the goodness-of-fit statistic for the distributions fitted to the April rain-
fall records for Ghale Shahrokh station. For all zero-adjusted distributions
ω̂ = 0.06.

Model Estim. (s.e.) K-S (p-value) AIC
ZAGA µ̂=60.87 (1.00) 0.12 (0.42) 480.12

σ̂=0.62 (1.00)
ZAIG µ̂=60.86 (1.07) 0.15 (0.22) 495.39

σ̂=0.11 (1.05)
ZALN µ̂=3.90 (0.10) 0.097 (0.78) 484.94

σ̂=0.69 (1.05)
ZAWEI µ̂=68.5 (1.00) 0.14 (0.29) 481.30

σ̂=1.70 (1.00)
ZALLG µ̂=3.92 (0.01) 0.096 (0.72) 480.87

σ̂=0.37 (1.01)
ZAGG µ̂=60.89 (1.00) 0.12 (0.42) 482.12

σ̂=0.62(1.00)
ν̂=1 (0.57)

ZAGIG µ̂=60.87 (1.00) 0.12 (0.42) 482.12
σ̂=22.94(1.00)
ν̂=2.60 (0.57)

sample size of this study is greater than 30, hence AIC can be applied to determine

the best model. In small to moderate sample size applications where the candidate

collection includes models of high dimension, AIC may severely underestimated and

the criterion may favor the overfitted models [2]. It is also noteworthy that the

distribution of the K-S test statistic is not dependent on the underlying cumulative

distribution function being tested. Another advantage is that it is an exact test.

Despite these advantages, the K-S test has several important limitations. The K-S

test is more sensitive (i.e., more power) near the center of the distribution than at

the tails which might lead to incorrect inferences, see [9] for more details. It is note-

worthy that the zero-adjusted version of the distributions of the Lindley family, as

referenced in [8], were also subjected to fitting to the data in order to ascertain the

potential for a superior fit. However, none of the distributions exhibited a superior

fit to the data when compared to the zero-adjusted gamma distribution.

5. Conclusions

This paper addresses a key issue in rainfall frequency analysis, particularly in

arid and semi-arid regions where data sets often comprise zero rainfall values. In
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such instances, the standard distributions typically employed in existing literature

are unsuitable for modelling such data sets, as they are defined on a positive range

of values, which makes them incompatible with the statistical characteristics of the

data. Moreover, the results may vary notably when the analysis is conducted with

and without zero values. It is thus necessary to develop an innovative frequency

analysis method that is suitable for rainfall data including zeros. In this study, the

zero-adjusted version of the standard distributions commonly used in hydrology for

modelling rainfall amount in wet regions have been introduced as a special case of

a mixed distribution, which is a combination of the discrete and continuous compo-

nents. The objective was to identify the most suitable model for monthly rainfall

records for a typical hydrometric station in a semi-arid region in the middle of Iran

over a period of 49 years from 1970 to 2018. This was achieved by fitting a series

of distributions, including zero-adjusted version of gamma, inverse Gaussian, log-

normal, Weibull, log logistic, generalized gamma and generalized inverse Gaussian

distributions. The maximum likelihood method, the most widely used parameter

estimation method, was employed to fit these distributions. The models were eval-

uated using a combination of the K-S test and AIC criteria. The results indicated

that the zero-adjusted gamma distribution was the most satisfactory fit for the data.

In conclusion, the findings of this study can be applied to the modelling of other

hydrological variables, such as streamflow, drought magnitude, wind speed, and so

forth.
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