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NEW SUBCLASS OF p-VALENT CLOSE-TO-CONVEX

FUNCTIONS

Gagandeep Singh a, ∗ and Gurcharanjit Singh b

Abstract. In this paper, we introduce a new and generalized subclass of p-valently
close-to-convex functions defined with subordination. We establish the coefficient
estimates, inclusion relation, distortion theorem and argument theorem for this class.
Some earlier known results follow as consequences.

1. Introduction

For p ∈ N, let Ap denote the class of analytic functions f in the open unit disc

E = {z : z ∈ C, |z| < 1} and has a Taylor series expansion of the form

f(z) = zp +

∞
∑

n=p+1

anz
n.

On putting p = 1 in Ap, we obtain the class A1 of analytic functions of the form

f(z) = z +
∑∞

k=2 akz
k and normalized by the conditions f(0) = f ′(0) − 1 = 0.

Further, S denote the class of functions in A1 which are univalent in E. A function

w is said to be a Schwarz function if it has expansion of the form w(z) =
∑∞

n=1 cnz
n

and satisfy the conditions w(0) = 0 and |w(z)| ≤ 1. The class of Schwarz functions

is denoted by U . An analytic function f is said to be subordinate to another analytic

function g in E, if there exists a Schwarz function w ∈ U such that f(z) = g(w(z)).

If f is subordinate to g, then it is denoted by f ≺ g. Moreover, if g is univalent in

E, then f ≺ g is equivalent to f(0) = g(0) and f(E) ⊂ g(E).

For 0 ≤ α < p, the class of p-valently starlike functions of order α is denoted by

S∗
p(α) and is defined as
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S∗
p(α) =

{

f : f ∈ Ap, Re

(

zf ′(z)

f(z)

)

> α, z ∈ E

}

.

The class S∗
p(α) was introduced by Goluzina [5]. For 0 ≤ α < 1, S∗

1 (α) ≡ S∗(α), the

class of starlike functions of order α. Also S∗
p(0) ≡ S∗

p , the class of p-valent starlike

functions. Further S∗
1 (0) ≡ S∗, the well known class of starlike functions.

The class Cp(α) of p-valent close-to-convex functions was introduced by Umezawa [12]

and defined as

Cp(α) =

{

f : f ∈ Ap, Re

(

zf ′(z)

g(z)

)

> α, g ∈ S∗
p , z ∈ E

}

.

For p = 1, α = 0, the class Cp(α) reduces to C which is the class of close-to-convex

functions introduced by Kaplan [7].

The class of starlike functions with respect to symmetric points is denoted by S∗
s

and is defined as

Re

(

2zf ′(z)

f(z)− f(−z)

)

> 0.

Sakaguchi [11] established the class S∗
s . Clearly

f(z)− f(−z)

2
is a starlike func-

tion [3] in E and so S∗
s is a subclass of the class C of close-to-convex functions.

Further, Gao and Zhou [4] established the class KS which is given by

Ks =

{

f : f ∈ A, Re

(

−z2f ′(z)

g(z)g(−z)

)

> 0, g ∈ S∗

(

1

2

)

, z ∈ E

}

,

where S∗
(

1
2

)

is the class of starlike functions of order 1
2
.

Kowalczyk and Les-Bomba [8] extended the class KS by introducing the class

KS(γ), (0 ≤ γ < 1) which is mentioned below

Ks(γ) =

{

f : f ∈ A, Re

(

−z2f ′(z)

g(z)g(−z)

)

> γ, g ∈ S∗

(

1

2

)

, z ∈ E

}

.

For γ = 0, the class KS(γ) reduces to the class KS .

Janowski [6] introduced the class P(A,B) of analytic functions of the form

q(z) = 1 +
∑∞

k=1 pkz
k such that q(z) ≺

1 +Az

1 +Bz
where −1 ≤ B < A ≤ 1. Fur-

ther, for 0 ≤ α < p, Aouf [1] established the class P(A,B; p;α), which con-

sists of analytic functions of the form q(z) = p +
∑∞

k=1 pkz
k such that q(z) ≺

p+ [pB + (A−B)(p− α)]z

1 +Bz
. For p = 1, α = 0, the class P(A,B; p;α) reduces to

P(A,B).

Motivated by the above mentioned work, now we introduce the following gener-

alized subclass of Ap.
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Definition 1. Let Kp
s(A,B; η) denote the class of functions f ∈ Ap which satisfy

the conditions,

−z2f ′(z)

zp−1g(z)g(−z)
≺

p+ [pB + (A−B)(p− η)]z

1 +Bz
,−1 ≤ B < A ≤ 1, z ∈ E,

where g(z) = z +
∑∞

n=2 bnz
n ∈ S∗

(

1

2

)

, and 0 ≤ η < p,−1 ≤ B < A ≤ 1.

The following observations are obvious.

(i) For η = 0, A = 1, B = −1, the class Kp
s(A,B; η) agrees with Kp

s , defined in [9].

(ii) On putting η = 0, A = 1− 2γ,B = −1, the class Kp
s(A,B; η) reduces to Kp

s(γ),

introduced in [9].

(iii) Taking p = 1, η = 0, A = 1, B = −1, the class Kp
s(A,B; η) gives the class Ks

which was introduced by Gao and Zhou [4].

(iv) Substituting p = 1, η = 0, A = 1 − 2γ,B = −1 in Kp
s(A,B; η), the class Ks(γ)

studied by Kowalczyk and Les Bomba [8], can be easily obtained.

By definition of subordination, it follows that f ∈ Kp
s(A,B; η) implies

(1)
−z2f ′(z)

zp−1g(z)g(−z)
=

p+ [pB + (A−B)(p − η)]w(z)

1 +Bw(z)
= P (z), w ∈ U .

We establish various properties such as coefficient estimates, inclusion relationship,

distortion theorem and argument theorem for the functions in the class Kp
s(A,B; η).

For particular values of A,B and η, some earlier known results follow as special

cases.

In the sequel, we assume that −1 ≤ B < A ≤ 1, 0 ≤ η < p, p ∈ N, z ∈ E.

2. Preliminary Results

For deriving the main results, we need the following lemmas:

Lemma 1 ([9]). If

g(z) = z +

∞
∑

n=2

bnz
n ∈ S∗

(

1

2

)

,

then

G(z) =
−g(z)g(−z)

z
= z +

∞
∑

n=2

d2n−1z
2n−1

is an odd starlike function and |d2n−1| ≤ 1, n ∈ N− {1}.
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Lemma 2 ([1]). Let,

(2)
p+ [pB + (A−B)(p− η)]w(z)

1 +Bw(z)
= P (z) = p+

∞
∑

n=1

qnz
n,

then

|qn| ≤ (p− η)(A−B), n ≥ 1.

Lemma 3 ([10]). Let −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1, then

1 +A1z

1 +B1z
≺

1 +A2z

1 +B2z
.

Lemma 4 ([4]). For g ∈ S∗
(

1
2

)

,

G(z) =
−g(z)g(−z)

z

is an odd starlike function, and so for |z| = r, 0 < r < 1, we have

r

1 + r2
≤ |G(z)| ≤

r

1− r2
.

3. Main Results

Theorem 1. If f(z) = zp +
∑∞

n=p+1 anz
n ∈ Kp

s(A,B; η), then

for n odd, we have

(3) |ap+n| ≤
n+ 1

2(p + n)
(A−B)(p− η)

and when n is even

(4) |ap+n| ≤
1

2(p + n)
[n(A−B)(p− η) + 2p].

Proof. As f ∈ Kp
s(A,B; η), therefore (1) yields

−z2f ′(z)

zp−1g(z)g(−z)
= P (z),

which can be further expressed as

(5)
zf ′(z)

zp−1G(z)
= P (z),

where

(6) G(z) =
−g(z)g(−z)

z
= z +

∞
∑

n=2

d2n−1z
2n−1.
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Using the expansions of f(z), G(z) and P (z) in (5) and equating the coefficients

of zn+p, it yields

(7) (p+ n)ap+n = qn + d3qn−2 + d5qn−4 + ...+ dn−2q3 + dnq1

and

(8) (p+ n)ap+n = qn + d3qn−2 + d5qn−4 + ...+ dn−1q2 + dn+1p

Applying triangle inequality and using Lemmas 1 and 2 in (7) and (8), the results

(3) and (4) can be easily obtained. �

Substituting for η = 0, A = 1, B = −1 in Theorem 1, we can easily obtain the

following result:

Corollary 1. If f ∈ Kp
s , then

|ap+n| ≤
p(n+ 1)

p+ n
.

Taking η = 0, A = 1− 2γ,B = −1, Theorem 1 yields the following result:

Corollary 2. If f ∈ Kp
s(γ), then

for n odd, we have

|ap+n| ≤
p(n+ 1)(1− γ)

p+ n
,

for n even,

|ap+n| ≤
p[n(1− γ) + 1]

p+ n
.

For p = 1, η = 0, A = 1, B = −1, Theorem 1 gives the following result:

Corollary 3. If f ∈ Ks, then

|an+1| ≤ 1.

On putting p = 1, η = 0, A = 1− 2γ,B = −1 in Theorem 1, the following result

is obvious:

Corollary 4. If f ∈ Ks(γ), then for n odd, we have

|an+1| ≤ (1− γ),
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for n even,

|an+1| ≤
n(1− γ) + 1

n+ 1
.

Theorem 2. If −1 ≤ B2 = B1 < A1 ≤ A2 ≤ 1 and 0 ≤ η2 ≤ η1 < 1, then

Kp
s(A1, B1; η1) ⊂ Kp

s(A2, B2; η2).

Proof. As f ∈ Kp
s(A1, B1; η1), so

−z2f ′(z)

zp−1g(z)g(−z)
≺

p+ [pB1 + (A1 −B1)(p− η1)]z

1 +B1z
.

As −1 ≤ B2 = B1 < A1 ≤ A2 ≤ 1 and 0 ≤ η2 ≤ η1 < 1, we have

− 1 ≤ B1 +
(p− η1)(A1 −B1)

p
≤ B2 +

(p − η2)(A2 −B2)

p
≤ 1.

Thus by Lemma 3, it yields

−z2f ′(z)

zp−1g(z)g(−z)
≺

p+ [pB2 + (A2 −B2)(p− η2)]z

1 +B2z
,

which implies f ∈ Kp
s(A2, B2; η2). �

Theorem 3. If f ∈ Kp
s(A,B; η), then for |z| = r, 0 < r < 1, we have

(

p− [pB + (A−B)(p− η)]r

1−Br

)(

rp−1

1 + r2

)

≤ |f ′(z)|

(9) ≤

(

p+ [pB + (A−B)(p − η)]r

1 +Br

)(

rp−1

1− r2

)

and
r

∫

0

(

p− [pB + (A−B)(p − η)]t

1−Bt

)(

tp−1

1 + t2

)

dt ≤ |f(z)|

(10) ≤

r
∫

0

(

p+ [pB + (A−B)(p− η)]t

1 +Bt

)(

tp−1

1− t2

)

dt.

Proof. (5) can be written as

(11) |zf ′(z)| = |zp−1G(z)||P (z)|.

Aouf [2] proved that

(12)
p− [pB + (A−B)(p − η)]r

1−Br
≤ |P (z)| ≤

p+ [pB + (A−B)(p− η)]r

1 +Br
.
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Since G is an odd starlike function, so by Lemma 4, we have

(13)
r

1 + r2
≤ |G(z)| ≤

r

1− r2
.

Using (12) and (13) in (11), the result (9) can be easily obtained. On integrating

(9) from 0 to r, (10) follows. �

Substituting for p = 1, A = 1 − 2γ, B = −1, η = 0 in Theorem 3, we can easily

obtain the following result due to Kowalczyk and Les Bomba [8]:

Corollary 5. If f ∈ Ks(γ), then for |z| = r, 0 < r < 1, we have

1− (1− 2γ)r

(1 + r)(1 + r2)
≤ |f ′(z)| ≤

1 + (1− 2γ)r

(1− r)(1− r2)

and
r

∫

0

(

1− (1− 2γ)t

(1 + t)(1 + t2)

)

dt ≤ |f(z)| ≤

r
∫

0

(

1 + (1− 2γ)t

(1− t)(1− t2)

)

dt.

Taking p = 1, A = 1, B = −1, η = 0, Theorem 3 yields the following result due

to Gao and Zhou [4]:

Corollary 6. If f ∈ Ks, then for |z| = r, 0 < r < 1, we have

1− r

(1 + r)(1 + r2)
≤ |f ′(z)| ≤

1 + r

(1− r)(1− r2)

and
r

∫

0

(

1− t

(1 + t)(1 + t2)

)

dt ≤ |f(z)| ≤

r
∫

0

(

1 + t

(1− t)(1− t2)

)

dt.

On putting η = 0, A = 1, B = −1 in Theorem 3, the following result is obvious:

Corollary 7. If f ∈ Kp
s , then for |z| = r, 0 < r < 1, we have

(

p(1− r)

1 + r

)(

rp−1

1 + r2

)

≤ |f ′(z)| ≤

(

p(1 + r)

1− r

)(

rp−1

1− r2

)

and
r

∫

0

(

p(1− t)

1 + t

)(

tp−1

1 + t2

)

dt ≤ |f(z)| ≤

r
∫

0

(

p(1 + t)

1− t

)(

tp−1

1− t2

)

dt.

For η = 0, A = 1− 2γ,B = −1, Theorem 3 gives the following result:
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Corollary 8. If f ∈ Kp
s(γ), then

p[1− (1− 2γ)r]

1 + r

(

rp−1

1 + r2

)

≤ |f ′(z)| ≤
p[1 + (1− 2γ)r]

1− r

(

rp−1

1− r2

)

and
r

∫

0

p[1− (1− 2γ)t]

1 + t

(

tp−1

1 + t2

)

dt ≤ |f(z)| ≤

r
∫

0

p[1 + (1− 2γ)t]

1− t

(

tp−1

1− t2

)

dt.

Theorem 4. If f ∈ Kp
s(A,B; η), then for |z| = r, 0 < r < 1, we have

(14)

∣

∣

∣

∣

arg
f ′(z)

zp−1

∣

∣

∣

∣

≤ 2sin−1(r) + sin−1

(

(A−B)(p− η)r

p− [pB + (A−B)(p− η)]Br2

)

.

Proof. (5) can be rewritten as

zf ′(z) = zp−1G(z)P (z),

which implies

(15)

∣

∣

∣

∣

arg
f ′(z)

zp−1

∣

∣

∣

∣

≤ |argP (z)| +

∣

∣

∣

∣

arg
G(z)

z

∣

∣

∣

∣

.

It was proved by Aouf [1] that

(16) |argP (z)| ≤ sin−1

(

(A−B)(p− η)r

p− [pB + (A−B)(p− η)]Br2

)

.

Also G is an odd starlike function, so it is well known that,

(17)

∣

∣

∣

∣

arg
G(z)

z

∣

∣

∣

∣

≤ 2sin−1r.

Using (16) and (17) in (15), the result (14) can be easily obtained. �
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