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EULER’S LINE SEGMENT THEORY IN LORENTZIAN AND
ISOTROPIC PLANE

JIN JU SEO

ABSTRACT. We examine the length theory of line segments in the Lorentzian plane
and the isotropic plane, with emphases the definition of distance.

1. INTRODUCTION

We became interested in the connection between the Euclidean plane E2, the
Lorentzian plane L? and the isotropic plane I, while trying to find a way to relate
Lorentzian geometry to isotropic geometry. We want to know if it is possible to
successively transform Euclidean geometry into isotropic geometry and then into
Lorentzian geometry in the definition of the dot product of geometry. An approach
to connect the three planes is to consider R? 3 (z,y) having a metric series ds? :=
dz? + edy? for e € R. If e = 1, ¢ = 0, € = —1, we get E?, I?, L2, where the
metric determines the geometry more or less completely. Euler did various studies
on straight lines. We prove the theory presented by Euler in [1] using the definition
of length. And we prove that the theory holds in the Lorentzian plane and the
isotropic plane using the definition of length. The goal of this article is to apply
the theorem of straight lines proposed by Euler to the Lorentzian plane L2 and the
isotropic plane I2. We can see that the connectivity of the three planes by proving
them using the metrics of the three planes. And this shows great possibility for
future research connecting the three planes. We study the metric of the Lorentz
plane in [8] and [9] and the metric of the isotropic plane in [7].

This article is organized as follows: In Section 2, we provide geometric interpre-

tations of the distances in E?, L2 and I?. In Section 3, we study the properties of

Received by the editors September 20, 2024. Revised January 14, 2025. Accepted Jan. 15, 2025.

2020 Mathematics Subject Classification. 53A35, 53B30.

Key words and phrases. Euler’s line segment theory, Lorentzian plane, isotropic plane.

This thesis is based on the lectures of Professor Seong-Deog Yang from the Department of Math-
ematics at Korea University. I sincerely hope that this thesis serves as a modest way to repay
Professor Yang’s guidance.

(© 2025 Korean Soc. Math. Edu.
23



24 JIN JU SEO

triangle segment length ratios in L2 and I? based on the properties of triangle seg-
ment length ratios in E2. In Section 4, we study the extension of the ‘problem raised
by Fermat in E135’ considered by Euler by applying the definition of the circle of L2
and I2. In Section 5, we study that the linear separation formula holds in all three
planes E2, .2 and I2.

2. PRELIMINARIES

The Euclidean plane E2, the isotropic plane I2, and the Lorentzian plane L? are

related by the following equation for the metric:
ds® = da® + edy®.

If e = 1,0,—1, we obtain the metric of E2,1% .2, respectively. The descriptations
about Euclidean plane E? and the Lorentzian plane L? in this paper are based on
the terminologies, notation, and contents of [3], [4], [5] and [6]. In particular, we
use z, y for the standard coordinate system for E2, x,¢ for L2, and z,1 for I>. When
expressed in x,l coordinates, the metric of the isotropic plane is dz?. The inner

product of the isotropic plane is naturally defined, similar to E? and L2.
Definition 2.1. (Euclidean plane) For two vectors (z1,y1), (z2,y2) € E2, define

(2.1) ((r1,91), (T2, 92))E = T172 + Y192

(, )E is called the Euclidean inner product.

(Lorentzian plane) For two vectors (z1,t1), (z2,t2) € L2, define

(22) ((fEl, tl), (IEQ, t2)>]L = X1T — tltg.

( , )L is called the Lorentzian inner product.

(isotropic plane) For two vectors (x1,11), (x2,12) € I2, define
(2.3) <(.%'1, ll), (.%'2, 12)>]1 = T1T2.
( , )ris called the isotropic inner product.

Definition 2.2. (Euclidean plane) Given two vectors X = (z1,y1) and Y = (22, y2),

we define
(2.4) d(X,Y)g =X =Yg

which is called the distance between X and Y.
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(Lorentzian plane) Given two vectors X = (z1,t1) and Y = (z2,t2), we define
(2.5) dX,Y)L =X =YL

which is called the distance between X and Y.

(isotropic plane) Given two vectors X = (z1,l1) and Y = (z9,12), we define
(2.6) dX,Y) =X -Y||t
which is called the distance between X and Y.

Lemma 2.3. The distance between two points A = (a1,as) and B = (by,by) on the

FEuclidean plane is
(27) d(A, B)]E = \/(b1 — a1)2 + (b2 — a2)2.

The distance between two points A = (a1,az) and B = (by,by) on the Lorentzian

plane is
(2.8) d(A,B)L, = /(b1 — a1)? — (by — az)?.
The distance between two points A = (ay1,a2) and B = (b1,by) on the isotropic
plane is
(2.9) d(A,B)1 = /(by — a1)?.

Proof. Vector norm in each plane is
1A = Bl = V(b1 — a1,b2 — az), (b1 —a1,b2 —az))e = /(b — a1)? + (b2 — a2)?,
|A = Bl|lL = V/{(b1 — a1,b2 — az), (b1 — a1, b2 —az))L = /(b1 — a1)? — (b2 — a2)?,
I|A = Bll1 = /(b1 — a1,ba — az), (b — a1, by — az))1 = /(b1 — a1)2,

so the result holds. O

3. SPECIFIC PROPERTIES FOR TRIANGLE SEGMENT LENGTH RATIOS
IN E2 L2, T2

Euler proposed Specific properties for triangle segment length ratios in E2. In this
section, we show whether the Specific properties for triangle segment length ratios
suggested by Euler [2] holds in L2,12. In particular, the distance formula between
two points in E2, L2 12 of (2.7), (2.8), (2.9) is used in the process of proving this

theorem.
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Figure 1. Triangle segment length ratios E?

Theorem 3.1 (Euler’s Theorem of 1780 in E2?). In a triangle ABC with concurrent
cevians Aa, Bb, and Cc as defined above with O their point of concurrency, the
following property hold:

AOg BOy COgp AOg BOrp COg
3.1 . . = 2.
( ) OGE Ob]E OC]E Oa,]E + Ob]E + OC]E +

The notation for the length of line segment AB in E? is ABg (= d(A, B)g).

Proof. Let the vertices of triangle ABC be A(aq,az), B(b1,b2), and C(cy, c2), respec-

tively. For convenience of calculation, let by = 0 and by = 0. The coordinate a of

the mq : mq internally dividing point of the line segment BC' is a(%, %),

and the coordinate b of the ny : ny internally dividing point of the line segment C' A

is b(n1a1+n261 niaz+nace
nit+nz 7 nitn2

). Therefore, the straight line passing through A, a is

(m1 +ma)ag — mica

Li:y=
Ly (m1 +ma)ar —micy

(x — a1) + as,

and the straight line passing through B, b is

Ly:y niaz + nzczx
2 = .
niaj + nacy

Finding the intersection O of two straight lines L; and Ls is
O( ).

Now, if the straight line passing through A and B is called L, then L : y = Z—f:c, and

m1(nia1 + nacr) my(nias + nacy)
ming + ming + mans’ ming + minae + mons

if the straight line passing through O and C is called L3, then

Lo — (min1 + mang)ca — miniaz
3:Y=

(miny + mang)cr — miniay (@ =)+

Finding the intersection point ¢ of two straight lines L and L3 is
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ming ming

a )
mini + monsg ! mini + monsg
and c is the internally dividing point of the line segment AB. Calculating by applying
(27,

_ nay/((m1 + ma)ay —mic1)? + ((m1 + ma)ag — mica)?

AOg = ,
N mi(ny + ng) + mang
m1+/(n1ar +nacy)? + (niag + naco)?
BO]E == )
mi(n1 + ng) + maong
COm — v (minia; — (ming + mang)er)? + (minjaz — (ming + mang)cs)?
" mi(ny + ng) + mang
and
ming mang
Oag = ——— AOk, Obp = ————————BOkg,
na(my + ms) mi(ni + ng)
Ocg = &COE.
ming + maong
Therefore, the result holds. [l

Lets apply the content of Theorem 3.1 in the Lorentzian plane. We use the

distance (2.8) of the Lorentzian plane.

Theorem 3.2 (Euler’s Theorem of 1780 in L?). In a triangle ABC with concurrent
cevians Aa, Bb, and Cc as defined above with O their point of concurrency, the
following property hold:

A0y, ~BOL COL _ AOq, L BOy, L COL
OCL]L Ob]L OC]L Oa]L Ob]L OC]L
The notation for the length of line segment AB in IL? is ABy, (= d(A, B)L).

(3.2) +2.

Proof. Let the vertices of triangle ABC be A(aq,a2), B(b1,b2), and C(cy,ca), re-
spectively. For convenience of calculation, let by = 0 and by = 0. In the same way

as the proof of Theorem 3.1, it is

micy mico b nia] +ngoci niaz + naco
b M M
mi -+ me mi + mo ny + ng ny + ng
ming ming

miny + mang “ ming + mang 2
and
m1(nia1 + nacr) my(nias + nacy)
ming +ming + mang MmN + ming + mans

o(

).
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Calculating by applying (2.8),

_ ng\/((ml + mg)al — m101)2 — ((m1 + mz)ag — m102)2

AO )
v mi(ny + ng) + maong
my \/(n1a1 + ngep)? — (n1ag + n262)2
BO]L == )
mi(n1 + ng) + maong
COp = \/(mlnlal — (ming + mana)cr)? — (minjaz — (ming + mang)ca)?
m1(7”L1 + 712) + moneg
and
mini mong
Oap, = ——AOy, Ob, = ————————BOy,
v na(my + ma) v B mi(ni + na) v
Ocp = wCOL_
miny + maong
Therefore, the result holds. O

Finally, let us apply Theorem 3.1 to the isotropic plane. We use the distance
(2.9) in the isotropic plane.

Theorem 3.3 (Euler’s Theorem of 1780 in I2). In a triangle ABC with concurrent
cevians Aa, Bb, and Cc as defined above with O their point of concurrency, the

following property hold:
AOp BOyp COp  AOp | BOp | COy
(3.3) Oaﬂ . Ob]I . OC]I - Oaﬂ + Ob]l + OC]I +

The notation for the length of line segment AB in 12 is ABy (= d(A, B)1).

2.

Proof. Let the vertices of triangle ABC be A(ay,as), B(b1,bs), and C(cy,¢2), re-
spectively. For convenience of calculation, let by = 0 and by = 0. In the same way
as the proof of Theorem 3.1, it is

micy micy b niai +ngcCi Mi1as + naca

) 7 7
m1+mg mi+ mo n1 + no n1 + ng
ming ming

ai, 0/2)7
ming + mang ming + mang

and
mi(niar + nac) mi(niag + naca)
miny + ming + mang’ ming + ming + mong”
Calculating by applying (2.9),

2 2

mi (n1a1 + ngcl)

AOr — ng\/((ml + mg)al — mlcl)
: mi(ny + ng) + mang’

mi(n1 + na) + mang

BO; =

\/(mlnlal — (m1ny + mansg)cy)?
ml(nl + 712) + mons

COp =
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M

Figure 2. A Problem posed by Fermat in E135 in E?

and
ming mana
Oar = ——— A0y, Obp = ———BO0y,
Y na(ma + ma) ! Y (g + na) :
Ocp = —"2 ooy,
mini + mane
Therefore, the result holds. [l

In the Euclidean plane, Lorentzian plane, and isotropic plane,
AO BO CO A0  BO  CO

Oa 0b 0c0a o0 TocT?

holds.

4. A PROBLEM POSED BY FERMAT IN E135 IN E2 .2, I?

Euler considered a problem posed by Fermat in E135. In this section, we prove the
problem (theorem) raised by Fermat in E135 and consider this problem (theorem) in
L2 and I?. In particular, the Lorentz plane is divided into ‘spacelike plane’, ‘timelike
plane’, and ‘lightlike plane’. And the equations of the circle in the three planes are
also different. We prove that the theorem holds in ‘spacelike plane’ and ‘timelike
plane’ respectively. In ‘lightlike plane’, circles are excluded because they are straight
lines. On the other hand, there are two equations of a circle in the isotropic plane.

We prove that the theorem holds as a circle whose center is a point.

Theorem 4.1 (Semicircle in E2). There is a semicircle with a rectangle ABFE

erected on its diameter AB as shown in Figure 2, where AFEg is A\%E i length.
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Form segments AE and AF that intersect AB in points R and S respectively. Then
(4.1) (ASg)? 4+ (BRg)? = (ABg)*.

Proof. For convenience of calculation, let A(—r,0) and B(r,0). The center O of a
semicircle is O(0,0), and the formula of a semicircle is 22 + y? = r?(y > 0). AEg is
A;%E, so it is E(—r,—v/2r) and F(r, —v/2r). Let M(x1,y;) be any point M on the
semicircle 2 + 42 = r2(y > 0). The straight line passing through M and E is

yptvar var (x+71)— Vor.

xr1+r

(4.2) Ly:y=

In the linear equation (4.2), if y = 0, then R( \/_“\[yl 7,0). The straight line passing
1
through M and F is

2
(4.3) Ly:y= M(x —7) —V2r
r1 —T
In the linear equation (4.3), if y = 0, then S (‘/_ilj—ylr 0). Calculating by applying
27,
2 —
ASe= VI L pp VI
Y1+ V2 y1+V2r
Therefore, the result of (4.1) holds. O

We can see from the above proof that the points of R and S exist inside the line
segment AB.

Lets apply the content of Theorem 4.1 in the Lorentzian plane. There are three
types of circles in the Lorentzian plane. The equation of a circle with the center at
(zo,to) is \/(z — m0)2 — (t —t9)2 =7, and r € RTUOUIR™. At this time, if r € RT,

it is a real circle, if » = 0, it is a zero circle, and if r € iR™, it is an imaginary circle.

At this time, the equation of the zero circle is (z — x¢)? = (¢t — tg9)?. We exclude

from the proof the zero circle, which appears as two perpendicular lines.

Theorem 4.2 (Real semicircle in L2). There is a real semicircle with a rectangle

ABFE erected on its diameter AB as shown in Figure 3, where AEy, is A\%L mn

length. Form segments AE and AF that intersect AB in points R and S respectively.
Then
(4.4) (ASL)? 4+ (BRy)? > (ABL)*.

Proof. Let us first prove the case where the real semicircle is 22 — ¢ = r2(r?2 >

0,t > 0). For convenience of calculation, let A(—r,0) and B(r,0). The center O
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Figure 3. A Problem posed by Fermat in E135 in L2 (spacelike)

of a real semicircle(x? — 2 = r2(r?2 > 0,t > 0)) is 0(0,0). AEy is A\%L, so it is
E(—r,—V/2r) and F(r,—/2r). Let M(z1,t1) be any point M on the real semicircle

22 —t2 =72(r2 > 0,t > 0). The straight line passing through M and E is

t1 +/2r

4.5 Li:t=
(45) ! T+

(x+71)— V2r.

In the linear equation (4.5), if ¢ = 0, then R(%r, 0). The straight line passing
through M and F is

(4.6) Ly:t= m(x —7)— V2.

r1 —7T

In the linear equation (4.6), if t = 0, then S(%r, 0). Calculating by applying
(2.8),

2 t 201 —t
As, = YEnth o opp o V2ot p o)
t1+V2r t+V2r
(4.7) (ASL)® + (BRL)? = 4r*(1 + _ M )
(t1 +v2r)?
If1+ % = 1 in the equation (4.7), the relation (ASp)? + (BRL)* = (ABL)*.
. . o . 212 . .
At this time, z; = £r, t; = 0. If 1 + 7(t1+\1/§r)2 > 1 in the equation (4.7), the

relation (ASL)? 4+ (BRL)? > (ABp)?. At this time, 21,t; are all points that satisfy

22—t =7r2(t>0). If 1+ % < 1 in the equation (4.7), the relation (ASy)? +
1
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Figure 4. A Problem posed by Fermat in E135 in L2 (timelike)

(BRL)* < (ABp)?. At this time, z; and ¢; do not exist. Therefore, the result of
(4.4) holds.

Now, let us prove the case where the real semicircle is 22 —t? = r2(r? > 0,¢ < 0).
Let A(—7,0), B(r,0), E(—r,v/2r), F(r,/2r) and let M(21,t;) be any point M on
the real semicircle 22 — t2 = r2(r? > 0, < 0). The straight line passing through M
and E is

tl — \/5’1“
4. L t=—7— 2r.
(4.8) ! el CRO R CL
In the linear equation (4.8), if ¢ = 0, then R(%r, 0). The straight line passing
through M and F is
t1 — V2
(4.9) Ly :t= 17*”(;6—7«) +V2r.
xr1 —7T
In the linear equation (4.9), if ¢ = 0, then S(%T,O). Therefore, ASy, =
7_2%“7“ +7r, BR, =r — 7_£%t1 r, ABp, = 2r, and
(4.10) (ASL)* + (BRL)® = 4r*(1 + L)
. (ti —V2r)2"
If 1—1—% — 1in the equation (4.10), the relation (ASL)*+(BRy)? = (ABL)>.
At this time, 1 = +r, t1 = 0. If 1 + 262 5 1 ip the equation (4.10), the

(ti—V2r)?
relation (ASL)? 4+ (BRL)? > (ABp)?. At this time, 21,t; are all points that satisfy
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22 =2t > 0). If1+ % < 1 in the equation (4.10), the relation
(ASL)? + (BRL)? < (ABp)?. At this time, z; and t; do not exist. Therefore, the

result of (4.4) holds. O

Theorem 4.3 (Imaginary semicircle in L.2). There is a imaginary semicircle with
a rectangle ABFE erected on its diameter AB as shown in Figure 4, where AEy, is
A\%L in length. Form segments AE and AF that intersect AB in points R and S

respectively. Then

(4.11) (ASL)? 4+ (BRy)? > (ABL)*.

Proof. Let us first prove the case where the imaginary semicircle is z? — 2 =

—72(r? > 0,2 > 0). For convenience of calculation, let A(0, —r) and B(0,7). The
center O of a real semicircle(z? — t2 = —r2(r? > 0,t > 0)) is 0(0,0). AEy, is A\%L,
so it is E(—+/2r,—r) and F(—+/2r,7). Let M(x1,t1) be any point M on the real

semicircle 22 — 2 = —r2(r?2 > 0,¢ > 0). The straight line passing through M and E

(4.12) Ly:t= _Zl R (x+V2r) — 7.

In the linear equation (4.12), if z = 0, then R(0, \fil \/3“ 7). The straight line passing
through M and F is

—t
(4.13) Lpit——2F" (x+V2r) +7
—x1 — \/_7“

In the linear equation (4.13), if z = 0, then S(0, %r) Calculating by applying
1
(2.8),

V2t + 1 V2t — 1y
ASy, = T+, BRy, = (r — 1, ABr, = (2r)i.
(9E1+\/_r ) ( x1+\f7“) (2r)
(4.14) (AS]L)2 + (BR]L)2 = —4r?(1 + 296712)
' (z1 +/2r)2
If 1+ % = 1 in the equation (4.14), the relation (ASy)? + (BRy)? = (ABL)*.
. . o o 2012 . .
At this time, t; = &7, ;1 = 0. If 1 + W > 1 in the equation (4.14), the

relation (ASL)? 4+ (BRy)? > (ABp)?. At this time, 21,t; are all points that satisfy
2 2 _ .2 . . . .

=t =r(x > 0). Ifl1+ (m1+\1/§r)2 < 1 in the equation (4.14), the relation
(AS]L)2 + (BR]L)2 < (ABL)Q. At this time, z1 and ¢; do not exist. Therefore, the

result of (4.11) holds.
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Now, let us prove the case where the imaginary semicircle is 22 — t? = —r2(r2 >
0,z < 0). Let A(0,—r), B(0,r), E(~2r,—r), F(v/2r,r) and let M(x1,t1) be any
point M on the imaginary semicircle 2 — 2 = —r2(r? > 0,2 < 0). The straight line
passing through M and FE is

-t —7r
—z1+V2r
In the linear equation (4.15), if x = 0, then R(0, %r) The straight line passing
through M and F is

(4.15) Ly:t= (x —V2r) -7

—li+r
—x1 +V2r
In the linear equation (4.16), if = 0, then S(0, mr). Therefore, ASp, =

(4.16) Ly:t= (x — V2r) + .

—z1+V2r
(Lhtir i 7)i, BRL = (r — 220500)i ABy = (2r)i, and
(4.17) (ASL)? + (BRp)? = —4r2(1 + 2“’“—12)
(=1 + \/57“)2
If 1—1—% = 1 in the equation (4.17), the relation (ASy.)*+ (BRy)* = (ABp)*.
is ti — _ 2112 . .
At this time, 1 = +r, t; = 0. If 1 + 7(_$1+1\/§T)2 > 1 in the equation (4.17), the

relation (ASL)? 4+ (BRy)? > (ABp)?. At this time, 21,t; are all points that satisfy
2 _ 42 _ .2 om? . . .

= —t =7r*(t > 0). If 1+ (_$1+1\/§T)2 < 1 in the equation (4.17), the relation
(AS]L)2 + (BR]L)2 < (ABL)Q. At this time, z1 and ¢; do not exist. Therefore, the

result of (4.11) holds. O

We can see from the proofs of Theorem 4.2 and Theorem 4.3 that one of the
points R and S is inside the line segment AB, and the other is outside the line
segment AB. This is different from the Euclidean plane where both points R and S
are inside the line segment AB.

Let us apply the content of Theorem 4.1 in the isotropic plane. There are two
types of circles in the isotropic plane. The equation of a circle in an isotropic plane
is 2 + Az + By + C = 0, and if B = 0, the center of the circle exists. We apply

Theorem 4.1 to a circle with a center.

Theorem 4.4 (Semicircle in 12). There is a semicircle with a rectangle ABFE
erected on its diameter AB as shown in Figure 5, where AEy is % in length. Form

segments AE and AF that intersect AB in points R and S respectively. Then
(4.18) (AS1)? + (BRy)* > (ABy)*.
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e M
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Figure 5. A Problem posed by Fermat in E135 in I?

Proof. Let the semicircle be #? = r2(I > 0). For convenience of calculation, let
A( 7,0) and B(r,0). The center O of a semicircle(x? = r2(I > 0)) is O(0,0). AE;

is so it is E(—r, —v/2r) and F(r, —/2r). First, let M(r,1;) be any point M on

f 9
the real semicircle x = r(r > 0). The straight line passing through M and E is
l 2
(4.19) Ly:l= %w(x+r)—\/§r.
r

In the linear equation (4.19), if [ = 0, then R(l\f:—\;—é?{r, 0). The point S where the

straight line passing through point M and point F' and the X — axis meet is S(r,0).
Calculating by applying (2.9),

\/§T—l1
AS; = 2r, BRy=r— > 1y ABy = 2r.
T T T T l1+\/§TT T T
1,2
4.20 ASD)? + (BRy)? = 4r2(1 + !
(4.20) (AS1)” + (BRy) (1+ (l1+\/_7“))

If 1+ @ +\f T = = 1 in the equation (4.20), the relation (ASy)? + (BRy)? = (ABy)>.

At this time, 1 =7, [; = 0. If1+(l +\/— 2
(ASp)? (BRH) > (ABy)?. At this time, 21,/ are all points that satisfy = = r(r > 0).
If 1+ @ +\/— 5 < 1 in the equation (4.20), the relation (ASy)* + (BRy)? < (ABy)*.
At this time, x; and [; do not exist. Therefore, the result of (4.18) holds.

Now, let us prove the case where the real semicircle is © = —r(r > 0). Let
A(=r,0), B(r,0), E(=r,—/2r), F(r,—v/2r) and let M(z,l;) be any point M on

> 1 in the equation (4.20), the relation
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the real semicircle z = —r(r > 0). The straight line passing through M and F' is

(4.21) Ly:l= _ll;ir\/ir(x —r)—V2r

In the linear equation (4.21), if [ = 0, then S(= \/_’ilf =221ty ). The point R where

the straight line passing through point M and point E and the X — azis meet is
R(—7,0). Therefore, AS = h=v2r,. o r, BRy = 2r, ABy = 2r, and

z Vo
(4.22) (AS1)? + (BRy)? = 4r%(1 + h* ——)
(I +V/2r)?
If1+ = 1 in the equation (4.22), the relation (ASy)? 4+ (BRy)? = (ABy)*.

(L +f 2r)?
At this time, 1 = —r,[; =0. If 1+ —2— @ +xf E
(AS)*+ (BRH)2 > (ABr)?. At this time, 1,/; are all points that satisfy z = —r(r >

0). fl1+—=—— @ +«f 7 < 1 in the equation (4.22), the relation (ASt)*+(BRy)* < (ABp)>.
At this time, 27 and I} do not exist. Therefore, the result of (4.18) holds. It is proven

in the same way for the semicircle 22 = r2(I < 0). O

> 1 in the equation (4.22), the relation

We can see from the proof of Theorem 4.4 that one of the points R and S exists
inside the line segment AB, and the other point is equal to point A or B. Therefore,
it can be seen that the positions of points R and S continuously change in the

Euclidean plane, isotropic plane, and Lorentzian plane.

5. LINEAR SEPARATION IN [E2 L2 I?

For the problem proved in section 4, Euler shows a lemma. In this section, we
prove this lemma on E2, L2, and I?. There are several proofs of this lemma, but we
prove it using (2.7), (2.8), (2.9).

Lemma 5.1. For any collinear points X, Y, Z, W in the Fuclidean plane are given

in that order along their line,

Proof. Let y = mx +n be the straight line passing through the points X, Y, Z, and
W. For z1 < y1 < z1 < wi, let point X be X (z1, mx1+n), point Y be Y (y1, my;+n),
point Z be Z(z1,mz; + n), and point W be W (wy,mw; + n). Applying (2.7) to

calculate the distance between two points gives us

XWe=VItmlw—z|,  YZe=V1tme|z -,



EULERS LINE SEGMENT THEORY IN LORENTZIAN AND ISOTROPIC PLANE 37

XYg=V1i+m2ly —xz|, WZg=V1+m2|zn —wl,

and
XZg =14+ m? |z — 1], WYg =vV1+m?|y —wq.
Therefore, equation (5.1) holds. d

Lets apply the content of Lemma 5.1 in the Lorentzian plane. We use the distance

(2.8) of the Lorentzian plane.

Lemma 5.2. For any collinear points X, Y, Z, W in the Lorentzian plane are
given in that order along their line,

(5.2) XWL-YZL + XY, Wiy, =XZ, - WYL

Proof. Let y = mx + n be the straight line passing through the points X, Y, Z, and
W. For z1 < y1 < z1 < wi, let point X be X (z1, mx1+n), point Y be Y (y1, my;+n),
point Z be Z(z1,mz; + n), and point W be W (wy, mw; + n). Applying (2.8) to

calculate the distance between two points gives us
XWo = VI-mZlw —21|,  YZi=V1-mlz -,
XY= VI—mlly—zi|,  WZ=VI—m? |z —wi,

and
X7, =V1—m? |z — 1], WYL =vV1-—m?|y — wq].
Therefore, equation (5.2) holds. O

Finally, let us apply Lemma 5.1 to the isotropic plane. We use the distance (2.9)

in the isotropic plane.

Lemma 5.3. For any collinear points X, Y, Z, W in the isotropic plane are given
in that order along their line,

(5.3) XWi - YZr+ XV - W2y =XZp - WYL

Proof. Let y = mx +n be the straight line passing through the points X, Y, Z, and
W. For z1 < y1 < z1 < wi, let point X be X (z1, mx1+n), point Y be Y (y1, my;+n),
point Z be Z(z1,mz; + n), and point W be W (wy,mw; + n). Applying (2.9) to

calculate the distance between two points gives us
XWi = |wr — 2], YZi = |21 —wl,

XY= |y — 21|, WZy = |z —w],
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and

XZHZ‘Zl—xll, WYH:\yl—wll.

Therefore, equation (5.3) holds. O

In the Euclidean plane, Lorentzian plane, and isotropic plane,

XW . YZ+ XY WZ=XZ WY

holds.
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