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EULER’S LINE SEGMENT THEORY IN LORENTZIAN AND

ISOTROPIC PLANE

Jin Ju Seo

Abstract. We examine the length theory of line segments in the Lorentzian plane
and the isotropic plane, with emphases the definition of distance.

1. Introduction

We became interested in the connection between the Euclidean plane E
2, the

Lorentzian plane L
2 and the isotropic plane I

2, while trying to find a way to relate

Lorentzian geometry to isotropic geometry. We want to know if it is possible to

successively transform Euclidean geometry into isotropic geometry and then into

Lorentzian geometry in the definition of the dot product of geometry. An approach

to connect the three planes is to consider R2 ∋ (x, y) having a metric series ds2ǫ :=

dx2 + ǫdy2 for ǫ ∈ R. If ǫ = 1, ǫ = 0, ǫ = −1, we get E
2, I

2, L
2, where the

metric determines the geometry more or less completely. Euler did various studies

on straight lines. We prove the theory presented by Euler in [1] using the definition

of length. And we prove that the theory holds in the Lorentzian plane and the

isotropic plane using the definition of length. The goal of this article is to apply

the theorem of straight lines proposed by Euler to the Lorentzian plane L
2 and the

isotropic plane I
2. We can see that the connectivity of the three planes by proving

them using the metrics of the three planes. And this shows great possibility for

future research connecting the three planes. We study the metric of the Lorentz

plane in [8] and [9] and the metric of the isotropic plane in [7].

This article is organized as follows: In Section 2, we provide geometric interpre-

tations of the distances in E
2, L2 and I

2. In Section 3, we study the properties of
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triangle segment length ratios in L
2 and I

2 based on the properties of triangle seg-

ment length ratios in E
2. In Section 4, we study the extension of the ‘problem raised

by Fermat in E135’ considered by Euler by applying the definition of the circle of L2

and I
2. In Section 5, we study that the linear separation formula holds in all three

planes E2, L2 and I
2.

2. Preliminaries

The Euclidean plane E
2, the isotropic plane I

2, and the Lorentzian plane L
2 are

related by the following equation for the metric:

ds2 = dx2 + ǫdy2.

If ǫ = 1, 0,−1, we obtain the metric of E2, I2,L2, respectively. The descriptations

about Euclidean plane E
2 and the Lorentzian plane L

2 in this paper are based on

the terminologies, notation, and contents of [3], [4], [5] and [6]. In particular, we

use x, y for the standard coordinate system for E2, x, t for L2, and x, l for I2. When

expressed in x, l coordinates, the metric of the isotropic plane is dx2. The inner

product of the isotropic plane is naturally defined, similar to E
2 and L

2.

Definition 2.1. (Euclidean plane) For two vectors (x1, y1), (x2, y2) ∈ E
2, define

(2.1) 〈(x1, y1), (x2, y2)〉E := x1x2 + y1y2.

〈 , 〉E is called the Euclidean inner product.

(Lorentzian plane) For two vectors (x1, t1), (x2, t2) ∈ L
2, define

(2.2) 〈(x1, t1), (x2, t2)〉L := x1x2 − t1t2.

〈 , 〉L is called the Lorentzian inner product.

(isotropic plane) For two vectors (x1, l1), (x2, l2) ∈ I
2, define

(2.3) 〈(x1, l1), (x2, l2)〉I := x1x2.

〈 , 〉I is called the isotropic inner product.

Definition 2.2. (Euclidean plane) Given two vectors X = (x1, y1) and Y = (x2, y2),

we define

(2.4) d(X,Y )E := ||X − Y ||E

which is called the distance between X and Y.



EULERS LINE SEGMENT THEORY IN LORENTZIAN AND ISOTROPIC PLANE 25

(Lorentzian plane) Given two vectors X = (x1, t1) and Y = (x2, t2), we define

(2.5) d(X,Y )L := ||X − Y ||L

which is called the distance between X and Y.

(isotropic plane) Given two vectors X = (x1, l1) and Y = (x2, l2), we define

(2.6) d(X,Y )I := ||X − Y ||I

which is called the distance between X and Y.

Lemma 2.3. The distance between two points A = (a1, a2) and B = (b1, b2) on the

Euclidean plane is

(2.7) d(A,B)E =
√

(b1 − a1)2 + (b2 − a2)2.

The distance between two points A = (a1, a2) and B = (b1, b2) on the Lorentzian

plane is

(2.8) d(A,B)L =
√

(b1 − a1)2 − (b2 − a2)2.

The distance between two points A = (a1, a2) and B = (b1, b2) on the isotropic

plane is

(2.9) d(A,B)I =
√

(b1 − a1)2.

Proof. Vector norm in each plane is

||A−B||E =
√

〈(b1 − a1, b2 − a2), (b1 − a1, b2 − a2)〉E =
√

(b1 − a1)2 + (b2 − a2)2,

||A−B||L =
√

〈(b1 − a1, b2 − a2), (b1 − a1, b2 − a2)〉L =
√

(b1 − a1)2 − (b2 − a2)2,

||A−B||I =
√

〈(b1 − a1, b2 − a2), (b1 − a1, b2 − a2)〉I =
√

(b1 − a1)2,

so the result holds. �

3. Specific Properties for Triangle Segment Length Ratios

in E
2
,L

2
, I

2

Euler proposed Specific properties for triangle segment length ratios in E
2. In this

section, we show whether the Specific properties for triangle segment length ratios

suggested by Euler [2] holds in L
2, I2. In particular, the distance formula between

two points in E
2,L2, I2 of (2.7), (2.8), (2.9) is used in the process of proving this

theorem.
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Figure 1. Triangle segment length ratios E2

Theorem 3.1 (Euler’s Theorem of 1780 in E
2). In a triangle ABC with concurrent

cevians Aa, Bb, and Cc as defined above with O their point of concurrency, the

following property hold:

(3.1)
AOE

OaE
· BOE

ObE
· COE

OcE
=

AOE

OaE
+

BOE

ObE
+

COE

OcE
+ 2.

The notation for the length of line segment AB in E
2 is ABE (= d(A,B)E).

Proof. Let the vertices of triangle ABC be A(a1, a2), B(b1, b2), and C(c1, c2), respec-

tively. For convenience of calculation, let b1 = 0 and b2 = 0. The coordinate a of

the m1 : m2 internally dividing point of the line segment BC is a( m1c1
m1+m2

, m1c2
m1+m2

),

and the coordinate b of the n1 : n2 internally dividing point of the line segment CA

is b(n1a1+n2c1
n1+n2

, n1a2+n2c2
n1+n2

). Therefore, the straight line passing through A, a is

L1 : y =
(m1 +m2)a2 −m1c2

(m1 +m2)a1 −m1c1
(x− a1) + a2,

and the straight line passing through B, b is

L2 : y =
n1a2 + n2c2

n1a1 + n2c1
x.

Finding the intersection O of two straight lines L1 and L2 is

O(
m1(n1a1 + n2c1)

m1n1 +m1n2 +m2n2
,

m1(n1a2 + n2c2)

m1n1 +m1n2 +m2n2
).

Now, if the straight line passing through A and B is called L, then L : y = a2
a1
x, and

if the straight line passing through O and C is called L3, then

L3 : y =
(m1n1 +m2n2)c2 −m1n1a2

(m1n1 +m2n2)c1 −m1n1a1
(x− c1) + c2.

Finding the intersection point c of two straight lines L and L3 is
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c(
m1n1

m1n1 +m2n2
a1,

m1n1

m1n1 +m2n2
a2),

and c is the internally dividing point of the line segment AB. Calculating by applying

(2.7),

AOE =
n2

√

((m1 +m2)a1 −m1c1)2 + ((m1 +m2)a2 −m1c2)2

m1(n1 + n2) +m2n2
,

BOE =
m1

√

(n1a1 + n2c1)2 + (n1a2 + n2c2)2

m1(n1 + n2) +m2n2
,

COE =

√

(m1n1a1 − (m1n1 +m2n2)c1)2 + (m1n1a2 − (m1n1 +m2n2)c2)2

m1(n1 + n2) +m2n2

and

OaE =
m1n1

n2(m1 +m2)
AOE, ObE =

m2n2

m1(n1 + n2)
BOE,

OcE =
m1n2

m1n1 +m2n2
COE.

Therefore, the result holds. �

Lets apply the content of Theorem 3.1 in the Lorentzian plane. We use the

distance (2.8) of the Lorentzian plane.

Theorem 3.2 (Euler’s Theorem of 1780 in L
2). In a triangle ABC with concurrent

cevians Aa, Bb, and Cc as defined above with O their point of concurrency, the

following property hold:

(3.2)
AOL

OaL
· BOL

ObL
· COL

OcL
=

AOL

OaL
+

BOL

ObL
+

COL

OcL
+ 2.

The notation for the length of line segment AB in L
2 is ABL (= d(A,B)L).

Proof. Let the vertices of triangle ABC be A(a1, a2), B(b1, b2), and C(c1, c2), re-

spectively. For convenience of calculation, let b1 = 0 and b2 = 0. In the same way

as the proof of Theorem 3.1, it is

a(
m1c1

m1 +m2
,

m1c2

m1 +m2
), b(

n1a1 + n2c1

n1 + n2
,
n1a2 + n2c2

n1 + n2
),

c(
m1n1

m1n1 +m2n2
a1,

m1n1

m1n1 +m2n2
a2),

and

O(
m1(n1a1 + n2c1)

m1n1 +m1n2 +m2n2
,

m1(n1a2 + n2c2)

m1n1 +m1n2 +m2n2
).
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Calculating by applying (2.8),

AOL =
n2

√

((m1 +m2)a1 −m1c1)2 − ((m1 +m2)a2 −m1c2)2

m1(n1 + n2) +m2n2
,

BOL =
m1

√

(n1a1 + n2c1)2 − (n1a2 + n2c2)2

m1(n1 + n2) +m2n2
,

COL =

√

(m1n1a1 − (m1n1 +m2n2)c1)2 − (m1n1a2 − (m1n1 +m2n2)c2)2

m1(n1 + n2) +m2n2

and

OaL =
m1n1

n2(m1 +m2)
AOL, ObL =

m2n2

m1(n1 + n2)
BOL,

OcL =
m1n2

m1n1 +m2n2
COL.

Therefore, the result holds. �

Finally, let us apply Theorem 3.1 to the isotropic plane. We use the distance

(2.9) in the isotropic plane.

Theorem 3.3 (Euler’s Theorem of 1780 in I
2). In a triangle ABC with concurrent

cevians Aa, Bb, and Cc as defined above with O their point of concurrency, the

following property hold:

(3.3)
AOI

OaI
· BOI

ObI
· COI

OcI
=

AOI

OaI
+

BOI

ObI
+

COI

OcI
+ 2.

The notation for the length of line segment AB in I
2 is ABI (= d(A,B)I).

Proof. Let the vertices of triangle ABC be A(a1, a2), B(b1, b2), and C(c1, c2), re-

spectively. For convenience of calculation, let b1 = 0 and b2 = 0. In the same way

as the proof of Theorem 3.1, it is

a(
m1c1

m1 +m2
,

m1c2

m1 +m2
), b(

n1a1 + n2c1

n1 + n2
,
n1a2 + n2c2

n1 + n2
),

c(
m1n1

m1n1 +m2n2
a1,

m1n1

m1n1 +m2n2
a2),

and

O(
m1(n1a1 + n2c1)

m1n1 +m1n2 +m2n2
,

m1(n1a2 + n2c2)

m1n1 +m1n2 +m2n2
).

Calculating by applying (2.9),

AOI =
n2

√

((m1 +m2)a1 −m1c1)2

m1(n1 + n2) +m2n2
, BOI =

m1

√

(n1a1 + n2c1)2

m1(n1 + n2) +m2n2
,

COI =

√

(m1n1a1 − (m1n1 +m2n2)c1)2

m1(n1 + n2) +m2n2
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Figure 2. A Problem posed by Fermat in E135 in E
2

and

OaI =
m1n1

n2(m1 +m2)
AOI, ObI =

m2n2

m1(n1 + n2)
BOI,

OcI =
m1n2

m1n1 +m2n2
COI.

Therefore, the result holds. �

In the Euclidean plane, Lorentzian plane, and isotropic plane,

AO

Oa
· BO

Ob
· CO

Oc
=

AO

Oa
+

BO

Ob
+

CO

Oc
+ 2

holds.

4. A Problem posed by Fermat in E135 in E
2
,L

2
, I

2

Euler considered a problem posed by Fermat in E135. In this section, we prove the

problem (theorem) raised by Fermat in E135 and consider this problem (theorem) in

L
2 and I

2. In particular, the Lorentz plane is divided into ‘spacelike plane’, ‘timelike

plane’, and ‘lightlike plane’. And the equations of the circle in the three planes are

also different. We prove that the theorem holds in ‘spacelike plane’ and ‘timelike

plane’ respectively. In ‘lightlike plane’, circles are excluded because they are straight

lines. On the other hand, there are two equations of a circle in the isotropic plane.

We prove that the theorem holds as a circle whose center is a point.

Theorem 4.1 (Semicircle in E
2). There is a semicircle with a rectangle ABFE

erected on its diameter AB as shown in Figure 2, where AEE is ABE√
2

in length.
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Form segments AE and AF that intersect AB in points R and S respectively. Then

(4.1) (ASE)
2 + (BRE)

2 = (ABE)
2
.

Proof. For convenience of calculation, let A(−r, 0) and B(r, 0). The center O of a

semicircle is O(0, 0), and the formula of a semicircle is x2 + y2 = r2(y ≥ 0). AEE is
ABE√

2
, so it is E(−r,−

√
2r) and F (r,−

√
2r). Let M(x1, y1) be any point M on the

semicircle x2 + y2 = r2(y ≥ 0). The straight line passing through M and E is

(4.2) L1 : y =
y1 +

√
2r

x1 + r
(x+ r)−

√
2r.

In the linear equation (4.2), if y = 0, then R(
√
2x1−y1

y1+
√
2r

r, 0). The straight line passing

through M and F is

(4.3) L2 : y =
y1 +

√
2r

x1 − r
(x− r)−

√
2r.

In the linear equation (4.3), if y = 0, then S(
√
2x1+y1

y1+
√
2r

r, 0). Calculating by applying

(2.7),

ASE =

√
2x1 + y1

y1 +
√
2r

r + r, BRE = r −
√
2x1 − y1

y1 +
√
2r

r, ABE = 2r.

Therefore, the result of (4.1) holds. �

We can see from the above proof that the points of R and S exist inside the line

segment AB.

Lets apply the content of Theorem 4.1 in the Lorentzian plane. There are three

types of circles in the Lorentzian plane. The equation of a circle with the center at

(x0, t0) is
√

(x− x0)2 − (t− t0)2 = r, and r ∈ R
+∪0∪ iR+. At this time, if r ∈ R

+,

it is a real circle, if r = 0, it is a zero circle, and if r ∈ iR+, it is an imaginary circle.

At this time, the equation of the zero circle is (x − x0)
2 = (t − t0)

2. We exclude

from the proof the zero circle, which appears as two perpendicular lines.

Theorem 4.2 (Real semicircle in L
2). There is a real semicircle with a rectangle

ABFE erected on its diameter AB as shown in Figure 3, where AEL is ABL√
2

in

length. Form segments AE and AF that intersect AB in points R and S respectively.

Then

(4.4) (ASL)
2 + (BRL)

2 ≥ (ABL)
2
.

Proof. Let us first prove the case where the real semicircle is x2 − t2 = r2(r2 >

0, t ≥ 0). For convenience of calculation, let A(−r, 0) and B(r, 0). The center O
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Figure 3. A Problem posed by Fermat in E135 in L
2(spacelike)

of a real semicircle(x2 − t2 = r2(r2 > 0, t ≥ 0)) is O(0, 0). AEL is ABL√
2
, so it is

E(−r,−
√
2r) and F (r,−

√
2r). Let M(x1, t1) be any point M on the real semicircle

x2 − t2 = r2(r2 > 0, t ≥ 0). The straight line passing through M and E is

(4.5) L1 : t =
t1 +

√
2r

x1 + r
(x+ r)−

√
2r.

In the linear equation (4.5), if t = 0, then R(
√
2x1−t1

t1+
√
2r

r, 0). The straight line passing

through M and F is

(4.6) L2 : t =
t1 +

√
2r

x1 − r
(x− r)−

√
2r.

In the linear equation (4.6), if t = 0, then S(
√
2x1+t1

t1+
√
2r

r, 0). Calculating by applying

(2.8),

ASL =

√
2x1 + t1

t1 +
√
2r

r + r, BRL = r −
√
2x1 − t1

t1 +
√
2r

r, ABL = 2r,

(4.7) (ASL)
2 + (BRL)

2 = 4r2(1 +
2t1

2

(t1 +
√
2r)2

).

If 1 + 2t12

(t1+
√
2r)2

= 1 in the equation (4.7), the relation (ASL)
2 + (BRL)

2 = (ABL)
2.

At this time, x1 = ±r, t1 = 0. If 1 + 2t12

(t1+
√
2r)2

> 1 in the equation (4.7), the

relation (ASL)
2 + (BRL)

2
> (ABL)

2. At this time, x1,t1 are all points that satisfy

x2− t2 = r2(t > 0). If 1+ 2t12

(t1+
√
2r)2

< 1 in the equation (4.7), the relation (ASL)
2 +
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Figure 4. A Problem posed by Fermat in E135 in L
2(timelike)

(BRL)
2
< (ABL)

2. At this time, x1 and t1 do not exist. Therefore, the result of

(4.4) holds.

Now, let us prove the case where the real semicircle is x2− t2 = r2(r2 > 0, t ≤ 0).

Let A(−r, 0), B(r, 0), E(−r,
√
2r), F (r,

√
2r) and let M(x1, t1) be any point M on

the real semicircle x2 − t2 = r2(r2 > 0, t ≤ 0). The straight line passing through M

and E is

(4.8) L1 : t =
t1 −

√
2r

x1 + r
(x+ r) +

√
2r.

In the linear equation (4.8), if t = 0, then R(−
√
2x1−t1

t1−
√
2r

r, 0). The straight line passing

through M and F is

(4.9) L2 : t =
t1 −

√
2r

x1 − r
(x− r) +

√
2r.

In the linear equation (4.9), if t = 0, then S(−
√
2x1+t1

t1−
√
2r

r, 0). Therefore, ASL =

−
√
2x1+t1

t1−
√
2r

r + r, BRL = r − −
√
2x1−t1

t1−
√
2r

r, ABL = 2r, and

(4.10) (ASL)
2 + (BRL)

2 = 4r2(1 +
2t1

2

(t1 −
√
2r)2

).

If 1+ 2t12

(t1−
√
2r)2

= 1 in the equation (4.10), the relation (ASL)
2+(BRL)

2 = (ABL)
2.

At this time, x1 = ±r, t1 = 0. If 1 + 2t12

(t1−
√
2r)2

> 1 in the equation (4.10), the

relation (ASL)
2 + (BRL)

2
> (ABL)

2. At this time, x1,t1 are all points that satisfy
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x2 − t2 = r2(t > 0). If 1 + 2t12

(t1−
√
2r)2

< 1 in the equation (4.10), the relation

(ASL)
2 + (BRL)

2
< (ABL)

2. At this time, x1 and t1 do not exist. Therefore, the

result of (4.4) holds. �

Theorem 4.3 (Imaginary semicircle in L
2). There is a imaginary semicircle with

a rectangle ABFE erected on its diameter AB as shown in Figure 4, where AEL is
ABL√

2
in length. Form segments AE and AF that intersect AB in points R and S

respectively. Then

(4.11) (ASL)
2 + (BRL)

2 ≥ (ABL)
2
.

Proof. Let us first prove the case where the imaginary semicircle is x2 − t2 =

−r2(r2 > 0, x ≥ 0). For convenience of calculation, let A(0,−r) and B(0, r). The

center O of a real semicircle(x2 − t2 = −r2(r2 > 0, t ≥ 0)) is O(0, 0). AEL is ABL√
2
,

so it is E(−
√
2r,−r) and F (−

√
2r, r). Let M(x1, t1) be any point M on the real

semicircle x2 − t2 = −r2(r2 > 0, t ≥ 0). The straight line passing through M and E

is

(4.12) L1 : t =
−t1 − r

−x1 −
√
2r

(x+
√
2r)− r.

In the linear equation (4.12), if x = 0, then R(0,
√
2t1−x1

x1+
√
2r

r). The straight line passing

through M and F is

(4.13) L2 : t =
−t1 + r

−x1 −
√
2r

(x+
√
2r) + r.

In the linear equation (4.13), if x = 0, then S(0,
√
2t1+x1

x1+
√
2r

r). Calculating by applying

(2.8),

ASL = (

√
2t1 + x1

x1 +
√
2r

r + r)i, BRL = (r −
√
2t1 − x1

x1 +
√
2r

r)i, ABL = (2r)i.

(4.14) (ASL)
2 + (BRL)

2 = −4r2(1 +
2x1

2

(x1 +
√
2r)2

)

If 1+ 2x1
2

(x1+
√
2r)2

= 1 in the equation (4.14), the relation (ASL)
2+(BRL)

2 = (ABL)
2.

At this time, t1 = ±r, x1 = 0. If 1 + 2x1
2

(x1+
√
2r)2)2

> 1 in the equation (4.14), the

relation (ASL)
2 + (BRL)

2
> (ABL)

2. At this time, x1,t1 are all points that satisfy

x2 − t2 = r2(x > 0). If 1 + 2x1
2

(x1+
√
2r)2

< 1 in the equation (4.14), the relation

(ASL)
2 + (BRL)

2
< (ABL)

2. At this time, x1 and t1 do not exist. Therefore, the

result of (4.11) holds.
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Now, let us prove the case where the imaginary semicircle is x2 − t2 = −r2(r2 >

0, x ≤ 0). Let A(0,−r), B(0, r), E(
√
2r,−r), F (

√
2r, r) and let M(x1, t1) be any

point M on the imaginary semicircle x2− t2 = −r2(r2 > 0, x ≤ 0). The straight line

passing through M and E is

(4.15) L1 : t =
−t1 − r

−x1 +
√
2r

(x−
√
2r)− r.

In the linear equation (4.15), if x = 0, then R(0,
√
2t1+x1

−x1+
√
2r
r). The straight line passing

through M and F is

(4.16) L2 : t =
−t1 + r

−x1 +
√
2r

(x−
√
2r) + r.

In the linear equation (4.16), if x = 0, then S(0,
√
2t1−x1

−x1+
√
2r
r). Therefore, ASL =

(
√
2t1−x1

−x1+
√
2r
r + r)i, BRL = (r −

√
2t1+x1

−x1+
√
2r
r)i, ABL = (2r)i, and

(4.17) (ASL)
2 + (BRL)

2 = −4r2(1 +
2x1

2

(−x1 +
√
2r)2

).

If 1+ 2x1
2

(−x1+
√
2r)2

= 1 in the equation (4.17), the relation (ASL)
2+(BRL)

2 = (ABL)
2.

At this time, x1 = ±r, t1 = 0. If 1 + 2x1
2

(−x1+
√
2r)2

> 1 in the equation (4.17), the

relation (ASL)
2 + (BRL)

2
> (ABL)

2. At this time, x1,t1 are all points that satisfy

x2 − t2 = r2(t > 0). If 1 + 2x1
2

(−x1+
√
2r)2

< 1 in the equation (4.17), the relation

(ASL)
2 + (BRL)

2
< (ABL)

2. At this time, x1 and t1 do not exist. Therefore, the

result of (4.11) holds. �

We can see from the proofs of Theorem 4.2 and Theorem 4.3 that one of the

points R and S is inside the line segment AB, and the other is outside the line

segment AB. This is different from the Euclidean plane where both points R and S

are inside the line segment AB.

Let us apply the content of Theorem 4.1 in the isotropic plane. There are two

types of circles in the isotropic plane. The equation of a circle in an isotropic plane

is x2 + Ax + By + C = 0, and if B = 0, the center of the circle exists. We apply

Theorem 4.1 to a circle with a center.

Theorem 4.4 (Semicircle in I
2). There is a semicircle with a rectangle ABFE

erected on its diameter AB as shown in Figure 5, where AEI is
ABI√

2
in length. Form

segments AE and AF that intersect AB in points R and S respectively. Then

(4.18) (ASI)
2 + (BRI)

2 ≥ (ABI)
2
.
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Figure 5. A Problem posed by Fermat in E135 in I
2

Proof. Let the semicircle be x2 = r2(l ≥ 0). For convenience of calculation, let

A(−r, 0) and B(r, 0). The center O of a semicircle(x2 = r2(l ≥ 0)) is O(0, 0). AEI

is ABI√
2
, so it is E(−r,−

√
2r) and F (r,−

√
2r). First, let M(r, l1) be any point M on

the real semicircle x = r(r > 0). The straight line passing through M and E is

(4.19) L1 : l =
l1 +

√
2r

2r
(x+ r)−

√
2r.

In the linear equation (4.19), if l = 0, then R(
√
2r−l1

l1+
√
2r
r, 0). The point S where the

straight line passing through point M and point F and the X−axis meet is S(r, 0).

Calculating by applying (2.9),

ASI = 2r, BRI = r −
√
2r − l1

l1 +
√
2r

r, ABI = 2r.

(4.20) (ASI)
2 + (BRI)

2 = 4r2(1 +
l1

2

(l1 +
√
2r)2

)

If 1 + l1
2

(l1+
√
2r)2

= 1 in the equation (4.20), the relation (ASI)
2 + (BRI)

2 = (ABI)
2.

At this time, x1 = r, l1 = 0. If 1 + l1
2

(l1+
√
2r)2

> 1 in the equation (4.20), the relation

(ASI)
2+(BRI)

2
> (ABI)

2. At this time, x1,l1 are all points that satisfy x = r(r > 0).

If 1 + l1
2

(l1+
√
2r)2

< 1 in the equation (4.20), the relation (ASI)
2 + (BRI)

2
< (ABI)

2.

At this time, x1 and l1 do not exist. Therefore, the result of (4.18) holds.

Now, let us prove the case where the real semicircle is x = −r(r > 0). Let

A(−r, 0), B(r, 0), E(−r,−
√
2r), F (r,−

√
2r) and let M(x1, l1) be any point M on



36 Jin Ju Seo

the real semicircle x = −r(r > 0). The straight line passing through M and F is

(4.21) L2 : l =
−l1 −

√
2r

2r
(x− r)−

√
2r.

In the linear equation (4.21), if l = 0, then S(−
√
2x1−t1

t1−
√
2r

r, 0). The point R where

the straight line passing through point M and point E and the X − axis meet is

R(−r, 0). Therefore, ASI =
l1−

√
2r

l1+
√
2r
r + r, BRI = 2r, ABI = 2r, and

(4.22) (ASI)
2 + (BRI)

2 = 4r2(1 +
l1

2

(l1 +
√
2r)2

)

If 1 + l1
2

(l1+
√
2r)2

= 1 in the equation (4.22), the relation (ASI)
2 + (BRI)

2 = (ABI)
2.

At this time, x1 = −r, l1 = 0. If 1+ l1
2

(l1+
√
2r)2

> 1 in the equation (4.22), the relation

(ASI)
2+(BRI)

2
> (ABI)

2. At this time, x1,l1 are all points that satisfy x = −r(r >

0). If 1+ l1
2

(l1+
√
2r)2

< 1 in the equation (4.22), the relation (ASI)
2+(BRI)

2
< (ABI)

2.

At this time, x1 and l1 do not exist. Therefore, the result of (4.18) holds. It is proven

in the same way for the semicircle x2 = r2(l ≤ 0). �

We can see from the proof of Theorem 4.4 that one of the points R and S exists

inside the line segment AB, and the other point is equal to point A or B. Therefore,

it can be seen that the positions of points R and S continuously change in the

Euclidean plane, isotropic plane, and Lorentzian plane.

5. Linear Separation in E
2
,L

2
, I

2

For the problem proved in section 4, Euler shows a lemma. In this section, we

prove this lemma on E
2, L2, and I

2. There are several proofs of this lemma, but we

prove it using (2.7), (2.8), (2.9).

Lemma 5.1. For any collinear points X, Y , Z, W in the Euclidean plane are given

in that order along their line,

(5.1) XWE · Y ZE +XYE ·WZE = XZE ·WYE.

Proof. Let y = mx+n be the straight line passing through the points X, Y , Z, and

W . For x1 < y1 < z1 < w1, let pointX beX(x1,mx1+n), point Y be Y (y1,my1+n),

point Z be Z(z1,mz1 + n), and point W be W (w1,mw1 + n). Applying (2.7) to

calculate the distance between two points gives us

XWE =
√

1 +m2 |w1 − x1| , Y ZE =
√

1 +m2 |z1 − y1| ,
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XYE =
√

1 +m2 |y1 − x1| , WZE =
√

1 +m2 |z1 − w1| ,
and

XZE =
√

1 +m2 |z1 − x1| , WYE =
√

1 +m2 |y1 − w1| .
Therefore, equation (5.1) holds. �

Lets apply the content of Lemma 5.1 in the Lorentzian plane. We use the distance

(2.8) of the Lorentzian plane.

Lemma 5.2. For any collinear points X, Y , Z, W in the Lorentzian plane are

given in that order along their line,

(5.2) XWL · Y ZL +XYL ·WZL = XZL ·WYL.

Proof. Let y = mx+n be the straight line passing through the points X, Y , Z, and

W . For x1 < y1 < z1 < w1, let pointX beX(x1,mx1+n), point Y be Y (y1,my1+n),

point Z be Z(z1,mz1 + n), and point W be W (w1,mw1 + n). Applying (2.8) to

calculate the distance between two points gives us

XWL =
√

1−m2 |w1 − x1| , Y ZL =
√

1−m2 |z1 − y1| ,

XYL =
√

1−m2 |y1 − x1| , WZL =
√

1−m2 |z1 − w1| ,
and

XZL =
√

1−m2 |z1 − x1| , WYL =
√

1−m2 |y1 − w1| .
Therefore, equation (5.2) holds. �

Finally, let us apply Lemma 5.1 to the isotropic plane. We use the distance (2.9)

in the isotropic plane.

Lemma 5.3. For any collinear points X, Y , Z, W in the isotropic plane are given

in that order along their line,

(5.3) XWI · Y ZI +XYI ·WZI = XZI ·WYI.

Proof. Let y = mx+n be the straight line passing through the points X, Y , Z, and

W . For x1 < y1 < z1 < w1, let pointX beX(x1,mx1+n), point Y be Y (y1,my1+n),

point Z be Z(z1,mz1 + n), and point W be W (w1,mw1 + n). Applying (2.9) to

calculate the distance between two points gives us

XWI = |w1 − x1| , Y ZI = |z1 − y1| ,

XYI = |y1 − x1| , WZI = |z1 − w1| ,
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and

XZI = |z1 − x1| , WYI = |y1 − w1| .
Therefore, equation (5.3) holds. �

In the Euclidean plane, Lorentzian plane, and isotropic plane,

XW · Y Z +XY ·WZ = XZ ·WY

holds.
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