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PERFORMANCE ANALYSIS OF DEADLINE-CONSTRAINED

SLOTTED ALOHA UNDER MULTI-PACKET RECEPTION

Yun Han Bae

Abstract. We consider the slotted Aloha-based access network where multiple
transmitters try to send deadline-constrained packets to the access point. The de-
livery deadline of packets may be generally a random variable depending on the
type of traffic or their urgency. The successful delivery probability (SDP), which
is defined as the long-run fraction of packets successfully delivered to the receiver
before their maximum allowable deadline, is a suitable measure for evaluating the
performance of time-critical traffic. We derive the closed-form expression for the
SDP for the slotted Aloha-based access network under the assumptions of MPR
and general delivery deadline distribution.

1. Introduction

Multi-packet reception (MPR) is a promising technique for enhancing the net-

work performance in such a way that it enables receivers to correctly decode multiple

packets transmitted simultaneously. In the context of random access based networks,

there have been much efforts to gain an insight into the impact of MPR on the be-

havior of random access protocols. Many studies focused on the stability, saturation

throughput or delay issue for the slotted Aloha under MPR. Except for the recent

work [15], little attention has been devoted to investigating the reliability issue for

the slotted Aloha under MPR.

Delay-sensitive applications are widely used in wireless networks. Such applica-

tions include data collection between mobile nodes, real-time monitoring or surveil-

lance, and real-time data broadcasting over wireless networks. For example, safety-

related messages are broadcasted among vehicles for safety and comport in wireless
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vehicular networks and these messages are required to be delivered to the neighbor-

ing vehicles within a given delivery deadline. By allowing the receiver to be equipped

with MPR-capability, it is expected that delay-sensitive applications can be serviced

better. It is therefore required to investigate the impact of MPR-capability on the

performance of deadline-constrained traffic.

In this paper, we consider a specific MPR channel, namely the M -MPR channel

as adopted in [7]-[16], in which the receiver is able to correctly decode up M packets

transmitted simultaneously by different nodes and otherwise all the packets are lost

due to collisions. This paper investigates the successful delivery probability (SDP),

which was introduced in [15, 17, 18] and is defined as the long-run proportion of

packets delivered to the receiver in time, of the slotted Aloha underM -MPR channel

model in the scenario that wireless devices transmit packets with a delivery deadline

to the receiver. Such a scenario can be safety message dissemination in vehicular

networks [19] or data collection in wireless sensor networks or machine-to-machine

communications [20]. In general, the delivery deadline of a packet may not be

constant and varies per packet due to the following reasons; the type of packet

(emergent or not) and the processing time. The SDP is a suitable measure for

evaluating the performance of deadline-constrained traffic.

Even if the performance of slotted Aloha access scheme has been extensively

investigated during several decades, there is a lack of research on how well the

slotted Aloha scheme works under deadline-constrained traffic and MPR scenario.

The focus of this paper is to investigate the performance (in terms of SDP) of slotted

Aloha under deadline-constrained traffic and MPR. The contributions of this paper

are summarized as follows:

• We derive the closed-form expression for SDP of the slotted Aloha under

M -MPR channel model when the delivery deadline of a packet follows a

general probability distribution.

• The result shows that when the transmission probability is not chosen opti-

mally, the SDP decreases as the variance of the delivery deadline increases

while the mean delivery deadline is fixed.

• We show that choosing the transmission probability optimally can mitigate

the negative effect of the variance of the delivery deadline on the SDP. As

a result, almost the same maximum SDP can be achieved regardless of the

variance of the delivery deadline.
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The slotted Aloha is a simple access scheme which has been widely used for

distributed channel access since Abramson’s seminal work [1]. A lot of studies have

been carried out from various perspective for evaluating the performance of the

slotted Aloha under the assumptions of single packet reception or MPR. Ghez et

al.[3, 4] first considered a slotted Aloha access protocol under a general MPR channel

model. They dealt with the stability issue for slotted Aloha based network under the

assumptions of MPR and infinite nodes. Naware et al.[2] extended the studies [3, 4]

to Aloha based network under MPR and finite nodes. Chan et al. [10] extended the

studies [3, 4] to CSMA (Carrier Sensing Multiple Access) based network under MPR.

Gau et al. [5, 6] investigated the throughput performance of slotted Aloha under

M -MPR channel model. Zhang et al. [7] showed that for the slotted Aloha with

M -MPR capability the saturation throughput increases superlinearly with M . In

[8], Zhang et al. showed that the superlinear scaling law also holds under bounded-

delay moment requirements. In [16], Bae et al. derived the optimal transmission

probability which maximizes the saturation throughput of the slotted Aloha under

M -MPR channel model. However, all the studies mentioned so far focused on either

the stability issue or throughput for the slotted Aloha under MPR.

Time-critical broadcasting services with strict delivery deadline constraint are

widely used for data collection between mobile nodes and real-time data broadcast-

ing over wireless networks. For instance, the dissemination of safety messages in

vehicular network can benefit from deadline-constrained broadcasting [9, 11]. Cam-

polo et al. [12, 13] considered IEEE 802.11p [14] based vehicular network in the

scenario that each node tries to send periodically-generated safety messages to its

neighbors and each safety message has a fixed delivery deadline constraint. They

derived the SDP of safety messages.

Perhaps the closest to our work are [15] and [18]. Zhang et al. [15] derived the

optimal transmission probability which maximizes the SDP of the slotted Aloha un-

der M -MPR channel. Their results are derived based on the restrictive assumptions

of saturated traffic condition and constant delivery deadline. The delivery deadline

defined in [15] is just the head-of-line delay, not the whole sojourn time in the sys-

tem. Bae [18] derived the SDP of the slotted Aloha under the assumptions of single

packet reception and constant delivery deadline. Accordingly, this work generalizes

the studies [15] and [18] in that we consider the general delivery deadline model and

MPR channel model.
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The rest of this work is organized as follows. In Section 2, system model is

presented. In Section 3. we develop a Markov chain model for a single node and

derive the SDP by using the stationary distribution of the Markov chain. Numerical

results are presented in Section 4 and Section 5 concludes this paper.

2. System Model

2.1. Network Model We consider a fully-connected one-hop wireless network con-

sisting of N transmitters (or nodes) and a receiver. All the nodes are within the

transmission range of each other and try to send their data packets to the common

receiver. A single wireless channel is shared among the nodes. The channel time is

divided into time slots of equal length and every transmitted packet occupies the

duration of one time slot.

A node l, 1 ≤ l ≤ N , has a data queue for storing data packets. We assume that

data packets arrive to the node l queue according to a Bernoulli process with mean

λl. That is, one packet arrives with probability λl or not with probability 1− λl in

a time slot. The packet arrival processes are assumed to be independent across the

nodes.

Each node generates deadline-constrained data traffic. Each packet has a delivery

deadline within which it should be transmitted successfully to the receiver. The

delivery deadline X of a data packet may vary in general. We assume that the

delivery deadlineX of a data packet is a random variable independent and identically

distributed across the data packets and the nodes. Let qn = P(X = n) 1 ≤ n ≤ D

be the probability mass function of X where D is the maximum delivery deadline.

Data packets exceeding the delivery deadline X are useless and thus are dropped

from the data queue even when they wait in the queue or are in service.

As adopted in [7, 8, 15, 16], the receiver is assumed to have anM MPR-capability,

all-or-nothing model. That is, the receiver is able to correctly decode all the packets

if not more than M nodes transmit simultaneously in a slot. Otherwise, if more

than M nodes transmit in a slot at the same time, collisions occur and any data

packet can not be decoded by the receiver. We assume that there is no channel error

and the only source of packet loss is collisions. A transmitted data packet is neither

acknowledged by the receiver nor retransmitted even if a transmission failure occurs.

The node l communicates with the receiver based on the slotted-Aloha with a

fixed transmission probability µl 0 < µl ≤ 1. In other words, the node l which has
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data packets to send attempts to transmit a data packet with probability µl at the

beginning of a time slot or not with probability 1− µl.

2.2. Performance Metric Successful delivery probability (SDP) is considered as

a performance metric for evaluating a time-critical traffic as in [15, 17, 18]. The SDP

of the node l is defined as the probability that a packet generated by the node l will

be successfully delivered to the receiver within the delivery deadline X. Consider

the tagged node l. Let Al(t) be the total number of packets arriving in the tagged

node’s queue during the time window [0, t]. Let Sl(t) be the number of packets

which are successfully delivered to the receiver by the tagged node during the time

window [0, t]. The SDP, denoted by Psdp, of the node l is then defined as follows:

Psdp := lim
t→∞

E[Sl(t)]

E[Al(t)]
= lim

t→∞

E[Sl(t)]/t

λl

,(1)

The second equality comes from the fact E[Al(t)] = λlt. Hence, the SDP means the

long-run fraction of packets which are successfully delivered to the receiver by the

node l before the expiry of delivery deadline of a packet.

3. Mathematical Analysis

For discrete-time modeling, the following assumptions are made in a slot t:

• A packet arrival, if any, occurs at the beginning of slot t.

• A packet departure (either successful transmission or loss due to the expiry

of delivery deadline), if any, occurs at the end of slot t

• We observe the stochastic behavior of the system immediately before the

end of slot t.

Consider the node l, 1 ≤ l ≤ N . For the node l, we define Sl
t as the elapsed sojourn

time (including the waiting time in the queue and the elapsed service time) of the

leading packet (the packet in the head of line) in service, if any, immediately before

the end of slot t. Then, Sl
t ∈ {0, 1, 2, · · · ,D} because the maximum delivery deadline

is equal toD. ‘Sl
t = 0’ denotes the state of empty queue and ‘Sl

t = i’ denotes the state

in which the queue of the node l is not empty and the sojourn time of the leading

packet is equal to i. Then, it is easy to see that {(S1
t , · · · , S

N
t ) : t = 0, 1, 2, · · · }

forms a Markov chain. It is worth noting that S1
t , · · · , S

N
t are independent across

the nodes because any collided packet is never retransmitted so that for each node

packet arrival and transmission processes evolve independently over time. As a

result, we only need to analyze the single process Sl
t for the node l.



58 Yun Han Bae

3.1. Markov Chain Model for a Single Node We assume homogeneous nodes

in that λl = λ and µl = µ for all nodes.1) We choose an arbitrary node among N

homogeneous nodes, called it the tagged node. Consider the Markov chain {St : t =

0, 1, 2, · · · } for the tagged node. Suppose that St = i in slot t. Let P be the transition

probability matrix of the Markov chain, whose (i, j) component is denoted by Pi,j =

P(St+1 = j|St = i). For convenience, we introduce the following probabilities:

• rn =
∑D

k=n qk; the probability that an arriving packet has a deadline not

less than n.

• hn = qn
rn
; the probability that the packet delivery deadline equal to n, given

that the packet deadline is not less than n

• λn = λrn; the probability that a packet arrives in a slot and its delivery

deadline is larger or equal to n

In what follows, we denote ā = 1 − a for 0 ≤ a ≤ 1. Then, the one-step transition

probabilities Pi,j, 0 ≤ i, j ≤ D are given as follows:

• For i = 0, P0,0 = λ̄, the probability of the event that there is no packet

arrival at the beginning of slot t+ 1; P0,1 = λ, the probability of the event

that a packet arrives at the beginning of slot t+ 1.

• For 1 ≤ i ≤ D−1, Pi,i+1 = h̄iµ̄, the probability of the event that i) the dead-

line of the leading packet is larger than i, given its elapsed deadline i, i.e.,

its deadline is not less than i, and ii) the leading packet is not transmitted

at the slot.

Pi,i−k = (hi+ h̄iµ)λi−kΠ
i
n=i−k+1(1−λn), 0 ≤ k ≤ i with the conventions

that
∏i

n(1 − λn) = 1 when n > i, λ0 = 1, and h0 = 1. This represents the

probability of the event that i) the leading packet is removed from the queue

due to either transmission or the expiry of deadline; ii) a packet arrived in

the k + 1-th slot since the arrival of the leading packet and its deadline is

larger or equal to i−k; iii) all the other packets, if any, which arrived before

the packet arrived in the k + 1-th slot, have been dropped from the queue

due to the expiry of deadline. Note that some packets arrived earlier than

the packet may be dropped from the queue because the delivery deadline is

a random variable.

• For i = D, PD,D−k = λD−kΠ
D
n=D−k+1(1 − λn) for 0 ≤ k ≤ D with the

conventions that
∏i

n(1− λn) = 1 when n > i and λ0 = 1.

1)Our developed model can be straightforwardly extended to the heterogeneous nodes case.



PERFORMANCE ANALYSIS OF DEADLINE-CONSTRAINED SLOTTED ALOHA 59

Let πi = limt→∞ P(St = i). We denote by π = (π0, π1, · · · , πD) the steady-state

probability vector of the Markov chain. Then, the balance equation πP = π yields

π0 = λ̄π0 +

D
∑

k=1

[

(hk + h̄kµ)

k
∏

n=1

(1− λn)

]

πk(2)

π1 = λπ0 + λ1

D
∑

k=1

[

(hk + h̄kµ)
k
∏

n=2

(1− λn)

]

πk(3)

πi = h̄i−1µ̄πi−1 + λi

D
∑

k=i

[

(hk + h̄kµ)

k
∏

n=i+1

(1− λn)

]

πk,

2 ≤ i ≤ D,(4)

where hD+ h̄Dµ = 1 because hD = 1 and we use the convention that
∏k

n(1−λn) = 1

if n > k. The equations (2), (3) and (4) are simplified in the next lemma.

Lemma 1. For 2 ≤ i ≤ D, we have

πi =
D
∑

k=i

[

(hk + h̄kµ)
k
∏

n=i+1

(1− λn)

]

πk(5)

πi =
h̄i−1µ̄

1− λi

πi−1.(6)

Proof. We show it inductively backward starting from i = D using (2), (3) and

(4). If i = D, The left-hand side of (5) becomes (hD + h̄Dµ)πD = πD because

hD + h̄Dµ = 1 and thus (5) holds for i = D. Also, (6) holds from (4) when i = D.

Suppose that (5) and (6) hold for 2 < i+ 1 < D. For i, we have

D
∑

k=i

[

(hk + h̄kµ)

k
∏

n=i+1

(1− λn)

]

πk

= (hi + h̄iµ)πi +
D
∑

k=i+1

[

(hk + h̄kµ)
k
∏

n=i+1

(1− λn)

]

πk

= (hi + h̄iµ)πi + (1− λi+1)πi+1

= (hi + h̄iµ)πi + h̄iµ̄πi

= πi,

where the second equality comes from the induction hypothesis (5) for i+1 and the

third equality from the induction hypothesis (6) for i+1. This proves the result (5)

for i. Combining this result and (4) leads to (6) for i. �
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Using (5) and (6), from (3) we easily get π1 = λ
λ̄
π0 since λ1 = λ. Hence, the

steady-state probabilities of the Markov chain are derived as

πi = λ1(µ̄)
i−1

i
∏

n=1

h̄n−1

λ̄n

π0, 1 ≤ i ≤ D(7)

π0 =

[

1 + λ1

D
∑

i=1

(

(µ̄)i−1
i
∏

n=1

h̄n−1

λ̄n

)]−1

,(8)

where we use the convention h̄0 = 1 and (8) comes from the normalization condition

D
∑

i=0

πi = 1.

3.2. Successful Delivery Probability To derive the SDP given by (1), of the

tagged node, we first drive the conditional successful transmission probability, de-

noted by Ps, which is defined as the probability that given the tagged node makes

a transmission attempt in a slot, the result is successful without collisions. Under

M -MPR channel model, a transmitted packet will be successfully delivered to the

receiver if there is no collision, i.e., not more than M nodes transmit simultaneously

in a slot. Note that an arbitrary node independently makes a transmission attempt

in a slot with probability π̄0µ because of the assumption of homogeneous nodes.

Therefore, given the tagged node makes a transmission attempt, the conditional

successful probability Ps of the packet is given by

Ps =
M−1
∑

k=0

(

N − 1
k

)

(π̄0µ)
k(1− π̄0µ)

N−k−1.(9)

The SDP given by (1) is then the ratio between i) the average number of packets

successfully delivered to the receiver by the tagged node in a slot before the deadline

and ii) the average number of packets arriving to the tagged node’s queue in a slot.

Hence, the SDP Psdp is obtained as

Psdp =
π̄0µPs

λ
,(10)

where Ps is given by (9). The optimal transmission probability µ∗ which maximizes

the SDP Psdp is then obtained as

arg max
µ∈(0,1]

Psdp.(11)
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Figure 1. Successful delivery probability for the varying l when λ =
0.02, M = 2 and µ = 1/N

4. Numerical Results

For numerical examples, system parameters are set as follows:

• The mean delivery deadline is set to E[X] = 100 slots.

• The packet arrival probability is set to λ = 0.02, i.e., the mean of packet

inter-arrival time is equal to 50 slots.

• The delivery deadline X is uniformly distributed on {n : 100 − l ≤ n ≤

100 + l} for some integer 0 ≤ l ≤ 99, i.e.,

qn = 1/(2l + 1), 100 − l ≤ n ≤ 100 + l(12)

In this model, the maximum delivery deadline D is equal to D = 100+ l and

E[X] = 100. When l = 0, this model reduces the deterministic model, i.e.,

P(X = 100) = 1. As l increases from 0 to 99, the variance of X increases

while the mean delivery deadline is always fixed.

Fig.1 shows the SDP as a function of l, which determines the probability dis-

tribution of the delivery deadline X and is given by (12), for different values of M

when λ = 0.02, M = 2 and µ = 1/N . Note that a large l leads to large variance of

the delivery deadline while the mean deadline is fixed. For each N , the SDP has its
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Figure 2. Successful delivery probability versus µ for different values
of M and l when λ = 0.02
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Figure 3. The maximum successful delivery probability as a function
of N for different values of M and l when λ = 0.02

maximum when l = 0, i.e., the delivery deadline is deterministic, and then decreases

as the variance of the delivery deadline increases. Therefore, we see that increasing
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the variance of the delivery deadline causes an additional loss in terms of SDP. On

the one hand, we see that the SDP decreases sharply with the increase of N . This

is because the collided packet is never acknowledged in our model and µ is simply

set to 1/N , which is not the optimal one.

Fig.2 plots the SDP versus µ for M = 1, 2, 3 and l = 0, 70 when λ = 0.02. For

each M , we notice that a smaller l leads to a higher SDP regardless of µ. We also

observe that the SDP increases for both cases l = 0 and l = 70 as µ increases. It

is worth noting that the gap of SDP between both cases l = 0 and l = 70 can be

minimized by optimally setting the respective µ. This result provides a motivation to

design the optimal transmission probability which maximizes the SDP. In addition,

as expected, it is seen that a larger M guarantees a higher SDP.

Fig.3 shows the maximum SDP, which is evaluated at the corresponding optimal

transmission probability µ∗ given by (11), as a function of N for the different values

of M and l when λ = 0.02. Note that in our delivery deadline model l = 0 and

l = 99 correspond to the lowest and the largest variances, respectively. Different

from the result in Fig.1, it is interesting to see that there is little difference between

the two SDPs for both l = 0 and l = 99. This result implies that choosing the

transmission probability optimally can mitigate the negative effect of the uncertainty

of the delivery deadline on the SDP. We also notice that with only M = 3 the

maximum SDP is larger than 0.9 even in a highly competing scenario. This gives a

strong motivation for the receiver to be equipped with MPR-capability.

5. Conclusions

We provided an analytical model for evaluating the SDP of the slotted Aloha

under general delivery deadline constraint and MPR channel. The SDP was derived

in a closed-form. The result showed that when the transmission probability is not

selected optimally, the variance of the delivery deadline had a negative effect on

the SDP. This negative effect of the variance of the deadline can be mitigated by

choosing the transmission probability optimally.
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