ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENCE EQUATION <TEX>$x_{n+1}\;=\;{\alpha}\;+\;\beta{x_{n-1}}^{p}/{x_n}^p$</TEX>
한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2004, v.11 no.1, pp.15-22
Liu, Zhaoshuang
(College of Mathematics and Information Science, Hebei Normal University)
Zhang, Zhenguo
(College of Mathematics and Information Science, Hebei Normal University)
Liu, Zhaoshuang,
&
Zhang, Zhenguo.
(2004). ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENCE EQUATION <TEX>$x_{n+1}\;=\;{\alpha}\;+\;\beta{x_{n-1}}^{p}/{x_n}^p$</TEX>. 한국수학교육학회지시리즈B:순수및응용수학, 11(1), 15-22.
Abstract
In this paper, we investigate asymptotic stability, oscillation, asymptotic behavior and existence of the period-2 solutions for difference equation <TEX>$x_{n+1}\;=\;{\alpha}\;+\;\beta{x_{n-1}}^{p}/{x_n}^p$</TEX> where <TEX>${\alpha}\;{\geq}\;0,\;{\beta}\;>\;0.\;<TEX>$\mid$</TEX>p<TEX>$\mid$</TEX>\;{\geq}\;1$</TEX>, and the initial conditions <TEX>$x_{-1}\;and\;x_0$</TEX> are arbitrary positive real numbers.
- keywords
-
difference equation,
stability,
oscillation,
period-2 solution