바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

Total Least Squares Fitting with Quadrics

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2004, v.11 no.2, pp.105-115
Helmuth Spath (University of Oldenburg)

Abstract

keywords
total least squares, quadrics.

참고문헌

1.

S. J. Ahn, W. Rauh , (1999) Geometric ?tting of line, plane, circle, sphere,and ellipse,

2.

S. J. Ahn, , (2000) Best-?t of implicit surfaces and plane curves, Vanderbilt Univ Press

3.

(2001) Least-squares orthogonal distances ?tting of circle, sphere, ellipse, hyperbola,and parabola,

4.

Gander, (1994) tting of circles and ellipses,

5.

M. Gulliksson, , (2001) Implicit surface ?tting using directionalconstraints,

6.

I. Seufer , (1999) Least squares ?tting of conic sections with type identi?cation byNURBS of degree two.,

7.

(1967) The damped taylor's series method for minimizing a sum of squares and forsolving systems of nonlinear equations Collected Algorithms of the ACM,

8.

Boston, (1992) Mathematical algorithms for linear regression Translated and revised fromthe 1987 German original by the author, Academic Press Inc

9.

(1996) Least-squares ?tting by circles,

10.

(1996) Orthogonal squared distance ¯tting with parabolas,

11.

(1997) Least-squares ?tting of ellipses and hyperbolas,

12.

(19961997) Orthogonal least squares ?tting by conic sections. Recent advances in totalleast squares techniques and errors-in-variables modeling,

13.

(1998) Least-square ?tting with spheres,

14.

(1999) Estimating the parameters of an ellipse when angular di??erences are known,

15.

D. A. Turner,, (1999) An algorithm for ? tting anellipsoid to data to be found in www,

한국수학교육학회지시리즈B:순수및응용수학