ISSN : 1226-0657
We consider the linear differential equations y〃'+ P(<TEX>$\chi$</TEX>)y'+Q(<TEX>$\chi$</TEX>)y=0 (1)(y"+P(<TEX>$\chi$</TEX>)y)'-Q(<TEX>$\chi$</TEX>)y =0 (2) Where (2) in the adjoint of (1) and P(<TEX>$\chi$</TEX>), Q(<TEX>$\chi$</TEX>) are continuous functions satisfying P(<TEX>$\chi$</TEX>)<TEX>$\geq$</TEX>0, Q(<TEX>$\chi$</TEX>)<TEX>$\leq$</TEX>0, P(<TEX>$\chi$</TEX>)-Q(<TEX>$\chi$</TEX>)<TEX>$\geq$</TEX>0 on [a, <TEX>${\alpha}$</TEX>). (3) In this, we show that a condition a oscillatory of(1).(omitted)