ISSN : 1226-0657
Let I be the interval, <TEX>$S^1$</TEX> the circle and let X be a compact metric space. And let <TEX>$C^{circ}(X,\;X)$</TEX> denote the set of continuous maps from X into itself. For any f<TEX>$f\in\;C\circ(X,\;X),\;let\;P(f),\;R(f),\;\Gamma(f),\;\Lambda(f)\;and\;\Omega(f)$</TEX> denote the collection of the periodic points, recurrent points, <TEX>${\gamma}-limit{\;}points,{\;}{\omega}-limit$</TEX> points and nonwandering points, respectively.(omitted)