바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

LIPSCHITZ AND ASYMPTOTIC STABILITY OF PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.1, pp.1-11
https://doi.org/10.7468/jksmeb.2015.22.1.1
Choi, Sang Il
Goo, Yoon Hoe
  • Downloaded
  • Viewed

Abstract

The present paper is concerned with the notions of Lipschitz and asymptotic for perturbed functional differential system knowing the corresponding stability of functional differential system. We investigate Lipschitz and asymptotic stability for perturbed functional differential systems. The main tool used is integral inequalities of the Bihari-type, and all that sort of things.

keywords
uniformly Lipschitz stability, uniformly Lipschitz stability in variation, exponentially asymptotic stability, exponentially asymptotic stability in variation

Reference

1.

Dannan, F.M.;Elaydi, S.;. (1986). Lipschitz stability of nonlinear systems of differential systems. J. Math. Anal. Appl., 113, 562-577. 10.1016/0022-247X(86)90325-2.

2.

Elaydi, S.;Farran, H.R.;. (1987). Exponentially asymptotically stable dynamical systems. Appl. Anal., 25, 243-252. 10.1080/00036818708839688.

3.

Gonzalez, P.;Pinto, M.;. (1994). Stability properties of the solutions of the nonlinear functional differential systems. J. Math. Anal. Appl., 181, 562-573. 10.1006/jmaa.1994.1044.

4.

Goo, Y.H.;. (2014). Lipschitz and asymptotic stability for perturbed nonlinear differential systems. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 21, 11-21.

5.

Goo, Y.H.;. (2013). Boundedness in the perturbed differential systems. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 20, 223-232.

6.

Goo, Y.H.;Cui, Y.;. (2013). Uniform Lipschitz and asymptotic stability for perturbed differential systems. J. Chungcheong Math. Soc., 26, 831-842. 10.14403/jcms.2013.26.4.831.

7.

Goo, Y.H.;Yang, S.B.;. (2011). h-stability of the nonlinear perturbed differential systems via t∞-similarity. J. Chungcheong Math. Soc., 24, 695-702.

8.

Lakshmikantham, V.;Leela, S.;. Differential and Integral Inequalities: Theory and Applications Vol.I.

9.

Pachpatte, B.G.;. (1973). A note on Gronwall-Bellman inequality. J. Math. Anal. Appl., 44, 758-762. 10.1016/0022-247X(73)90014-0.

10.

Alekseev, V.M.;. (1961). An estimate for the perturbations of the solutions of ordinary differential equations. Vestn. Mosk. Univ. Ser. I. Math. Mekh. (Russian), 2, 28-36.

11.

Brauer, F.;. (1967). Perturbations of nonlinear systems of differential equations, II. J. Math. Anal. Appl., 17, 418-434. 10.1016/0022-247X(67)90132-1.

12.

Brauer, F.;Strauss, A.;. (1970). Perturbations of nonlinear systems of differential equations, III. J. Math. Anal. Appl., 31, 37-48. 10.1016/0022-247X(70)90118-6.

13.

Brauer, F.;. (1972). Perturbations of nonlinear systems of differential equations, IV. J. Math. Anal. Appl., 37, 214-222. 10.1016/0022-247X(72)90269-7.

14.

Choi, S.K.;Koo, N.J.;. (1995). h-stability for nonlinear perturbed systems. Ann. of Diff. Eqs., 11, 1-9.

15.

Choi, S.K.;Goo, Y.H.;Koo, N.J.;. (1997). Lipschitz and exponential asymptotic stability for nonlinear functional systems. Dynamic Systems and Applications, 6, 397-410.

16.

Choi, S.K.;Koo, N.J.;Song, S.M.;. (1999). Lipschitz stability for nonlinear functional differential systems. Far East J. Math. Sci(FJMS)I, 5, 689-708.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics