바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

LIPSCHITZ AND ASYMPTOTIC STABILITY OF PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS

LIPSCHITZ AND ASYMPTOTIC STABILITY OF PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.1, pp.1-11
https://doi.org/10.7468/jksmeb.2015.22.1.1
Choi, Sang Il (Department of Mathematics, Hanseo University)
Goo, Yoon Hoe (Department of Mathematics, Hanseo University)

Abstract

The present paper is concerned with the notions of Lipschitz and asymptotic for perturbed functional differential system knowing the corresponding stability of functional differential system. We investigate Lipschitz and asymptotic stability for perturbed functional differential systems. The main tool used is integral inequalities of the Bihari-type, and all that sort of things.

keywords
uniformly Lipschitz stability, uniformly Lipschitz stability in variation, exponentially asymptotic stability, exponentially asymptotic stability in variation

참고문헌

1.

Dannan, F.M.;Elaydi, S.;. (1986). Lipschitz stability of nonlinear systems of differential systems. J. Math. Anal. Appl., 113, 562-577. 10.1016/0022-247X(86)90325-2.

2.

Elaydi, S.;Farran, H.R.;. (1987). Exponentially asymptotically stable dynamical systems. Appl. Anal., 25, 243-252. 10.1080/00036818708839688.

3.

Gonzalez, P.;Pinto, M.;. (1994). Stability properties of the solutions of the nonlinear functional differential systems. J. Math. Anal. Appl., 181, 562-573. 10.1006/jmaa.1994.1044.

4.

Goo, Y.H.;. (2014). Lipschitz and asymptotic stability for perturbed nonlinear differential systems. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 21, 11-21.

5.

Goo, Y.H.;. (2013). Boundedness in the perturbed differential systems. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 20, 223-232.

6.

Goo, Y.H.;Cui, Y.;. (2013). Uniform Lipschitz and asymptotic stability for perturbed differential systems. J. Chungcheong Math. Soc., 26, 831-842. 10.14403/jcms.2013.26.4.831.

7.

Goo, Y.H.;Yang, S.B.;. (2011). h-stability of the nonlinear perturbed differential systems via t∞-similarity. J. Chungcheong Math. Soc., 24, 695-702.

8.

Lakshmikantham, V.;Leela, S.;. Differential and Integral Inequalities: Theory and Applications Vol.I.

9.

Pachpatte, B.G.;. (1973). A note on Gronwall-Bellman inequality. J. Math. Anal. Appl., 44, 758-762. 10.1016/0022-247X(73)90014-0.

10.

Alekseev, V.M.;. (1961). An estimate for the perturbations of the solutions of ordinary differential equations. Vestn. Mosk. Univ. Ser. I. Math. Mekh. (Russian), 2, 28-36.

11.

Brauer, F.;. (1967). Perturbations of nonlinear systems of differential equations, II. J. Math. Anal. Appl., 17, 418-434. 10.1016/0022-247X(67)90132-1.

12.

Brauer, F.;Strauss, A.;. (1970). Perturbations of nonlinear systems of differential equations, III. J. Math. Anal. Appl., 31, 37-48. 10.1016/0022-247X(70)90118-6.

13.

Brauer, F.;. (1972). Perturbations of nonlinear systems of differential equations, IV. J. Math. Anal. Appl., 37, 214-222. 10.1016/0022-247X(72)90269-7.

14.

Choi, S.K.;Koo, N.J.;. (1995). h-stability for nonlinear perturbed systems. Ann. of Diff. Eqs., 11, 1-9.

15.

Choi, S.K.;Goo, Y.H.;Koo, N.J.;. (1997). Lipschitz and exponential asymptotic stability for nonlinear functional systems. Dynamic Systems and Applications, 6, 397-410.

16.

Choi, S.K.;Koo, N.J.;Song, S.M.;. (1999). Lipschitz stability for nonlinear functional differential systems. Far East J. Math. Sci(FJMS)I, 5, 689-708.

한국수학교육학회지시리즈B:순수및응용수학