ISSN : 1226-0657
Let(<TEX>$X^{\ast},\tau^{\ast}$</TEX>) be the space with one point Lindeloffication topology of space (X,<TEX>$\tau$</TEX>). This paper offers the definition of the space with one point Lin-deloffication topology of a topological space and proves that the retraction regu-lar closed function f: <TEX>$K^{\ast}(X^{\ast}$</TEX>) defined f(<TEX>$A^{\ast})=A^{\ast}$</TEX> if p <TEX>$\in A^{\ast}$</TEX> or (<TEX>$f(A^{\ast})=A^{\ast}-{p}$</TEX> if <TEX>$p \in A^{\ast}$</TEX> is a homomorphism. There are two examples in this paper to show that the retraction regular closed function f is neither a surjection nor an injection.