ISSN : 1226-0657
For A bounded subset G of a metric Space (X,d) and <TEX>$\chi \in X$</TEX>, let <TEX>$f_{G}$</TEX> be the real-valued function on X defined by <TEX>$f_{G}$</TEX>(<TEX>$\chi$</TEX>)=sup{<TEX>$d (\chi, g)\in:G$</TEX>}, and <TEX>$F(G,\chi)$</TEX>={<TEX>$z \in X:sup_{g \in G}d(g,z)=sup_{g \in G}d(g,\chi)+d(\chi,z)$</TEX>}. In this paper we discuss some properties of the map <TEX>$f_G$</TEX> and of the set <TEX>$ F(G, \chi)$</TEX> in convex metric spaces. A sufficient condition for an element of a convex metric space X to lie in <TEX>$ F(G, \chi)$</TEX> is also given in this pope.