바로가기메뉴

본문 바로가기 주메뉴 바로가기

Asian Dust Particles Induce TGF-β1 via Reactive Oxygen Species in Bronchial Epithelial Cells

Tuberculosis & Respiratory Diseases / Tuberculosis & Respiratory Diseases,
2012, v.73 no.2, pp.84-92


Jin Young Yoon (Gachon University)
Yu Jin Kim (Gachon University Gil Hospital)


  • Downloaded
  • Viewed

Abstract

Background: Asian dust storms can be transported across eastern Asia. In vitro, Asian dust particle-induced inflammation and enhancement of the allergic reaction have been observed. However, the fibrotic effects of Asian dust particles are not clear. Production of transforming growth factor β1 (TGF-β1) and fibronectin were investigated in the bronchial epithelial cells after exposure to Asian dust particulate matter (AD-PM10). Methods: During Asian dust storm periods, air samples were collected. The bronchial epithelial cells were exposed to AD-PM10 with and without the antioxidant, N-acetyl-L-cysteine (NAC). Then TGF-β1 and fibronectin were detected by Western blotting. The reactive oxygen species (ROS) was detected by the measurement of dicholorodihydrofluorescin (DCF), using a FACScan, and visualized by a confocal microscopy. Results: The expression of TGF-β1, fibronectin and ROS was high after being exposed to AD-PM10, compared to the control. NAC attenuated both TGF-β1 and fibronectin expression in the AD-PM10-exposed the bronchial epithelial cells. Conclusion: AD-PM10 may have fibrotic potential in the bronchial epithelial cells and the possible mechanism is AD-PM10-induced intracellular ROS.

keywords
Air Pollutants, Reactive Oxygen Species, Transforming Growth Factor β

Reference

1.

1. Wright JL, Postma DS, Kerstjens HA, Timens W, Whittaker P, Churg A. Airway remodeling in the smoke exposed guinea pig model. Inhal Toxicol 2007;19: 915-23.

2.

2. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 2011;183:788-824.

3.

3. Nemery B, Bast A, Behr J, Borm PJ, Bourke SJ, Camus PH, et al. Interstitial lung disease induced by exogenous agents: factors governing susceptibility. Eur Respir J Suppl 2001;32:30s-42s.

4.

4. Hubbard R, Cooper M, Antoniak M, Venn A, Khan S, Johnston I, et al. Risk of cryptogenic fibrosing alveolitis in metal workers. Lancet 2000;355:466-7.

5.

5. Taskar VS, Coultas DB. Is idiopathic pulmonary fibrosis an environmental disease? Proc Am Thorac Soc 2006; 3:293-8.

6.

6. Dockery DW, Pope CA 3rd, Xu X, Spengler JD, Ware JH, Fay ME, et al. An association between air pollution and mortality in six U.S. cities. N Engl J Med 1993;329: 1753-9.

7.

7. Schwartz J. Short term fluctuations in air pollution and hospital admissions of the elderly for respiratory disease. Thorax 1995;50:531-8.

8.

8. Foster WM, Costa DL. Air pollutants and the respiratory tract. 2nd ed. New York: Taylor & Francis; 2005.

9.

9. Bonner JC, Rice AB, Moomaw CR, Morgan DL. Airway fibrosis in rats induced by vanadium pentoxide. Am J Physiol Lung Cell Mol Physiol 2000;278:L209-16.

10.

10. Park JW, Lim YH, Kyung SY, An CH, Lee SP, Jeong SH, et al. Effects of ambient particulate matter on peak expiratory flow rates and respiratory symptoms of asthmatics during Asian dust periods in Korea. Respirology 2005;10:470-6.

11.

11. Kwon HJ, Cho SH, Chun Y, Lagarde F, Pershagen G. Effects of the Asian dust events on daily mortality in Seoul, Korea. Environ Res 2002;90:1-5.

12.

12. Chen YS, Sheen PC, Chen ER, Liu YK, Wu TN, Yang CY. Effects of Asian dust storm events on daily mortality in Taipei, Taiwan. Environ Res 2004;95:151-5.

13.

13. Lei YC, Chan CC, Wang PY, Lee CT, Cheng TJ. Effects of Asian dust event particles on inflammation markers in peripheral blood and bronchoalveolar lavage in pulmonary hypertensive rats. Environ Res 2004;95:71-6.

14.

14. Hiyoshi K, Ichinose T, Sadakane K, Takano H, Nishikawa M, Mori I, et al. Asian sand dust enhances ovalbumin-induced eosinophil recruitment in the alveoli and airway of mice. Environ Res 2005;99:361-8.

15.

15. Ichinose T, Sadakane K, Takano H, Yanagisawa R, Nishikawa M, Mori I, et al. Enhancement of mite allergen- induced eosinophil infiltration in the murine airway and local cytokine/chemokine expression by Asian sand dust. J Toxicol Environ Health A 2006;69:1571-85.

16.

16. Ichinose T, Yoshida S, Sadakane K, Takano H, Yanagisawa R, Inoue K, et al. Effects of asian sand dust, Arizona sand dust, amorphous silica and aluminum oxide on allergic inflammation in the murine lung. Inhal Toxicol 2008;20:685-94.

17.

17. He M, Ichinose T, Yoshida S, Yamamoto S, Inoue K, Takano H, et al. Asian sand dust enhances murine lung inflammation caused by Klebsiella pneumoniae. Toxicol Appl Pharmacol 2012;258:237-47.

18.

18. Yeo NK, Hwang YJ, Kim ST, Kwon HJ, Jang YJ. Asian sand dust enhances rhinovirus-induced cytokine secretion and viral replication in human nasal epithelial cells. Inhal Toxicol 2010;22:1038-45.

19.

19. Fujii T, Hayashi S, Hogg JC, Vincent R, Van Eeden SF. Particulate matter induces cytokine expression in human bronchial epithelial cells. Am J Respir Cell Mol Biol 2001;25:265-71.

20.

20. Gursinsky T, Ruhs S, Friess U, Diabaté S, Krug HF, Silber RE, et al. Air pollution-associated fly ash particles induce fibrotic mechanisms in primary fibroblasts. Biol Chem 2006;387:1411-20.

21.

21. Dai J, Gilks B, Price K, Churg A. Mineral dusts directly induce epithelial and interstitial fibrogenic mediators and matrix components in the airway wall. Am J Respir Crit Care Med 1998;158:1907-13.

22.

22. Hashimoto S, Gon Y, Takeshita I, Matsumoto K, Jibiki I, Takizawa H, et al. Diesel exhaust particles activate p38 MAP kinase to produce interleukin 8 and RANTES by human bronchial epithelial cells and N-acetylcysteine attenuates p38 MAP kinase activation. Am J Respir Crit Care Med 2000;161:280-5.

23.

23. Saldiva PH, Clarke RW, Coull BA, Stearns RC, Lawrence J, Murthy GG, et al. Lung inflammation induced by concentrated ambient air particles is related to particle composition. Am J Respir Crit Care Med 2002;165: 1610-7.

24.

24. Thannickal VJ, Lee DY, White ES, Cui Z, Larios JM, Chacon R, et al. Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem 2003;278:12384-9.

25.

25. Bonner JC, Rice AB, Lindroos PM, O'Brien PO, Dreher KL, Rosas I, et al. Induction of the lung myofibroblast PDGF receptor system by urban ambient particles from Mexico City. Am J Respir Cell Mol Biol 1998;19:672-80.

26.

26. Kinnula VL, Fattman CL, Tan RJ, Oury TD. Oxidative stress in pulmonary fibrosis: a possible role for redox modulatory therapy. Am J Respir Crit Care Med 2005; 172:417-22.

27.

27. Bowler RP, Crapo JD. Oxidative stress in airways: is there a role for extracellular superoxide dismutase? Am J Respir Crit Care Med 2002;166(12 Pt 2):S38-43.

28.

28. Gonzalez-Flecha B. Oxidant mechanisms in response to ambient air particles. Mol Aspects Med 2004;25:169-82.

29.

29. Demedts M, Behr J, Buhl R, Costabel U, Dekhuijzen R, Jansen HM, et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med 2005;353: 2229-42.

30.

30. Thannickal VJ, Fanburg BL. Activation of an H2O2- generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1. J Biol Chem 1995; 270:30334-8.

31.

31. Bellocq A, Azoulay E, Marullo S, Flahault A, Fouqueray B, Philippe C, et al. Reactive oxygen and nitrogen intermediates increase transforming growth factor-beta1 release from human epithelial alveolar cells through two different mechanisms. Am J Respir Cell Mol Biol 1999; 21:128-36.

Tuberculosis & Respiratory Diseases