바로가기메뉴

본문 바로가기 주메뉴 바로가기

Identification of Serial DNA Methylation Changes in the Blood Samples of Patients with Lung Cancer

Tuberculosis & Respiratory Diseases / Tuberculosis & Respiratory Diseases,
2019, v.82 no.2, pp.126-132
https://doi.org/10.4046/trd.2018.0042




  • Downloaded
  • Viewed

Abstract

Background: The development of lung cancer results from the interaction between genetic mutations and dynamic epigenetic alterations, although the exact mechanisms are not completely understood. Changes in DNA methylation may be a promising biomarker for early detection and prognosis of lung cancer. We evaluated the serial changes in genomewide DNA methylation patterns in blood samples of lung cancer patients. Methods: Blood samples were obtained for three consecutive years from three patients (2 years before, 1 year before, and after lung cancer detection) and from three control subjects (without lung cancer). We used the MethylationEPIC BeadChip method, which covers the 850,000 bp cytosine-phosphate-guanine (CpG) site, to conduct an epigenome-wide analysis. Significant differentially methylated regions (DMRs) were identified using p-values <0.05 in a correlation test identifying serial methylation changes and serial increase or decrease in β value above 0.1 for three consecutive years. Results: We found three significant CpG sites with differentially methylated β values and 7,105 CpG sites with significant correlation from control patients without lung cancer. However, there were no significant DMRs. In contrast, we found 11 significant CpG sites with differentially methylated β values and 10,562 CpG sites with significant correlation from patients with lung cancer. There were two significant DMRs: cg21126229 (RNF212) and cg27098574 (BCAR1). Conclusion: This study revealed DNA methylation changes that might be implicated in lung cancer development. The DNA methylation changes may be the possible candidate target regions for the early detection and prevention of lung cancer.

keywords
DNA Methylation, Lung Neoplasms, Biomarkers

Reference

1.

1. Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 2002; 99:3740-5.

2.

2. Irizarry RA, Ladd-Acosta C, Carvalho B, Wu H, Brandenburg SA, Jeddeloh JA, et al. Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res 2008; 18:780-90.

3.

3. Bjornsson HT, Brown LJ, Fallin MD, Rongione MA, Bibikova M, Wickham E, et al. Epigenetic specificity of loss of imprinting of the IGF2 gene in Wilms tumors. J Natl Cancer Inst 2007; 99:1270-3.

4.

4. Bibikova M, Lin Z, Zhou L, Chudin E, Garcia EW, Wu B, et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res 2006; 16:383-93.

5.

5. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 2011; 6:692-702.

Tuberculosis & Respiratory Diseases