바로가기메뉴

본문 바로가기 주메뉴 바로가기

False-Positive Mycobacterium tuberculosis Detection: Ways to Prevent Cross- Contamination

Tuberculosis & Respiratory Diseases / Tuberculosis & Respiratory Diseases,
2020, v.83 no.3, pp.211-217
https://doi.org/10.4046/trd.2019.0087
Mohammad Asgharzadeh (Tabriz University of Medical Sciences)
Mahdi Asghari Ozma (Tabriz University of Medical Sciences)
Jalil Rashedi (Tabriz University of Medical Sciences)
Behroz Mahdavi Poor (Tabriz University of Medical Sciences)
Vahid Agharzadeh (Tabriz University of Medical Sciences)
Ali Vegari (Urmia University of Medical Sciences)
Behrooz Shokouhi (Tabriz University of Medical Sciences)
Khudaverdi Ganbarov (Baku State University)
Nima Najafi Ghalehlou (Tabriz University of Medical Sciences)
Hamed Ebrahmzadeh Leylabadlo (Tabriz University of Medical Sciences)
Hossein Samadi Kafil (Tabriz University of Medical Sciences)
  • Downloaded
  • Viewed

Abstract

The gold standard method for diagnosis of tuberculosis is the isolation of Mycobacterium tuberculosis through culture, but there is a probability of cross-contamination in simultaneous cultures of samples causing false-positives. This can result in delayed treatment of the underlying disease and drug side effects. In this paper, we reviewed studies on falsepositive cultures of M. tuberculosis. Rate of occurrence, effective factors, and extent of false-positives were analyzed. Ways to identify and reduce the false-positives and management of them are critical for all laboratories. In most cases, falsepositive is occurring in cases with only one positive culture but negative direct smear. The three most crucial factors in this regard are inappropriate technician function, contamination of reagents, and aerosol production. Thus, to reduce false-positives, good laboratory practice, as well as use of whole-genome sequencing or genotyping of all positive culture samples with a robust, extra pure method and rapid response, are essential for minimizing the rate of false-positives. Indeed, molecular approaches and epidemiological surveillance can provide a valuable tool besides culture to identify possible false positives.

keywords
Mycobacterium tuberculosis, False-Positive Culture, Cross-Contamination, Genotyping

Reference

1.

1. World Health Organization. Global tuberculosis report 2018[Internet]. Geneva: World Health Organization; 2018 [cited 2020 Jan 10]. Available from: https://apps.who.int/iris/handle/10665/274453.

2.

2. Bialvaei AZ, Asgharzadeh M, Aghazadeh M, Nourazarian M, Kafil HS. Challenges of tuberculosis in Iran. Jundishapur J Microbiol 2017;10:e37866.

3.

3. Asgharzadeh M, Shahbabian K, Samadi Kafil H, Rafi A. Use of DNA fingerprinting in identifying the source case of tubercolosis in East Azarbaijan province of Iran. J Med Sci 2007;7:418-21.

4.

4. Leylabadlo HE, Kafil HS, Yousefi M, Aghazadeh M, Asgharzadeh M. Pulmonary tuberculosis diagnosis: where we are? Tuberc Respir Dis 2016;79:134-42.

5.

5. de C Ramos M, Soini H, Roscanni GC, Jaques M, Villares MC, Musser JM. Extensive cross-contamination of specimens with Mycobacterium tuberculosis in a reference laboratory. J Clin Microbiol 1999;37:916-9.

6.

6. de Boer AS, Blommerde B, de Haas PE, Sebek MM, Lambregts-van Weezenbeek KS, Dessens M, et al. False-positive Mycobacterium tuberculosis cultures in 44 laboratories in The Netherlands (1993 to 2000): incidence, risk factors, and consequences. J Clin Microbiol 2002;40:4004-9.

7.

7. Martinez M, Garcia de Viedma D, Alonso M, Andres S, Bouza E, Cabezas T, et al. Impact of laboratory cross-contamination on molecular epidemiology studies of tuberculosis. J Clin Microbiol 2006;44:2967-9.

8.

8. Small PM, McClenny NB, Singh SP, Schoolnik GK, Tompkins LS, Mickelsen PA. Molecular strain typing of Mycobacterium tuberculosis to confirm cross-contamination in the mycobacteriology laboratory and modification of procedures to minimize occurrence of false-positive cultures. J Clin Microbiol 1993;31:1677-82.

9.

9. Asgharzadeh M, Shahbabian K, Majidi J, Aghazadeh AM, Amini C, Jahantabi AR, et al. IS6110 restriction fragment length polymorphism typing of Mycobacterium tuberculosis isolates from East Azerbaijan Province of Iran. Mem Inst Oswaldo Cruz 2006;101:517-21.

10.

10. Jonsson J, Hoffner S, Berggren I, Bruchfeld J, Ghebremichael S, Pennhag A, et al. Comparison between RFLP and MIRUVNTR genotyping of Mycobacterium tuberculosis strains isolated in Stockholm 2009 to 2011. PLoS One 2014;9:e95159.

11.

11. Merker M, Kohl TA, Niemann S, Supply P. The evolution of strain typing in the Mycobacterium tuberculosis complex. In: Gagneux S, editor. Strain variation in the Mycobacterium tuberculosis complex: its role in biology, epidemiology and control. Cham: Springer; 2017. p. 43-78.

12.

12. Ribeiro FK, Lemos EM, Hadad DJ, Leao SC, Viana-Niero C, Dietze R, et al. Evaluation of low-colony-number counts of Mycobacterium tuberculosis on solid media as a microbiological marker of cross-contamination. J Clin Microbiol 2009;47:1950-2.

13.

13. Barac A, Karimzadeh-Esfahani H, Pourostadi M, Rahimi MT, Ahmadpour E, Rashedi J, et al. Laboratory cross-contamination of Mycobacterium tuberculosis : a systematic review and meta-analysis. Lung 2019;197:651-61.

14.

14. Hernandez-Garduno E, Cook V, Kunimoto D, Elwood RK, Black WA, FitzGerald JM. Transmission of tuberculosis from smear negative patients: a molecular epidemiology study. Thorax 2004;59:286-90.

15.

15. Ruddy M, McHugh TD, Dale JW, Banerjee D, Maguire H, Wilson P, et al. Estimation of the rate of unrecognized crosscontamination with mycobacterium tuberculosis in London microbiology laboratories. J Clin Microbiol 2002;40:4100-4.

16.

16. Globan M, Lavender C, Leslie D, Brown L, Denholm J, Raios K, et al. Molecular epidemiology of tuberculosis in Victoria, Australia, reveals low level of transmission. Int J Tuberc Lung Dis 2016;20:652-8.

17.

17. Thumamo BP, Asuquo AE, Abia-Bassey LN, Lawson L, Hill V, Zozio T, et al. Molecular epidemiology and genetic diversity of Mycobacterium tuberculosis complex in the Cross River State, Nigeria. Infect Genet Evol 2012;12:671-7.

18.

18. Lee MR, Chung KP, Chen WT, Huang YT, Lee LN, Yu CJ, et al. Epidemiologic surveillance to detect false-positive Mycobacterium tuberculosis cultures. Diagn Microbiol Infect Dis 2012;73:343-9.

19.

19. Asgharzadeh M, Kafil HS, Roudsary AA, Hanifi GR. Tuberculosis transmission in Northwest of Iran: using MIRU-VNTR, ETR-VNTR and IS6110-RFLP methods. Infect Genet Evol 2011;11:124-31.

20.

20. Lai CC, Tan CK, Lin SH, Liao CH, Chou CH, Huang YT, et al. Molecular evidence of false-positive cultures for Mycobacterium tuberculosis in a Taiwanese hospital with a high incidence of TB. Chest 2010;137:1065-70.

21.

21. Yan JJ, Jou R, Ko WC, Wu JJ, Yang ML, Chen HM. The use of variable-number tandem-repeat mycobacterial interspersed repetitive unit typing to identify laboratory cross-contamination with Mycobacterium tuberculosis . Diagn Microbiol Infect Dis 2005;52:21-8.

22.

22. Jasmer RM, Bozeman L, Schwartzman K, Cave MD, Saukkonen JJ, Metchock B, et al. Recurrent tuberculosis in the United States and Canada: relapse or reinfection? Am J Respir Crit Care Med 2004;170:1360-6.

23.

23. Hayward AC, Goss S, Drobniewski F, Saunders N, Shaw RJ, Goyal M, et al. The molecular epidemiology of tuberculosis in inner London. Epidemiol Infect 2002;128:175-84.

24.

24. McConkey SJ, Williams M, Weiss D, Adams H, Cave MD, Yang Z, et al. Prospective use of molecular typing of Mycobacterium tuberculosis by use of restriction fragment-length polymorphism in a public tuberculosis-control program. Clin Infect Dis 2002;34:612-9.

25.

25. Jasmer RM, Roemer M, Hamilton J, Bunter J, Braden CR, Shinnick TM, et al. A prospective, multicenter study of laboratory cross-contamination of Mycobacterium tuberculosis cultures. Emerg Infect Dis 2002;8:1260-3.

26.

26. Gascoyne-Binzi DM, Barlow RE, Frothingham R, Robinson G, Collyns TA, Gelletlie R, et al. Rapid identification of laboratory contamination with Mycobacterium tuberculosis using variable number tandem repeat analysis. J Clin Microbiol 2001;39:69-74.

27.

27. Dahle UR, Sandven P, Heldal E, Caugant DA. Molecular epidemiology of Mycobacterium tuberculosis in Norway. J Clin Microbiol 2001;39:1802-7.

28.

28. Gutierrez MC, Vincent V, Aubert D, Bizet J, Gaillot O, Lebrun L, et al. Molecular fingerprinting of Mycobacterium tuberculosis and risk factors for tuberculosis transmission in Paris, France, and surrounding area. J Clin Microbiol 1998;36:486-92.

29.

29. Braden CR, Templeton GL, Stead WW, Bates JH, Cave MD, Valway SE. Retrospective detection of laboratory cross-contamination of Mycobacterium tuberculosis cultures with use of DNA fingerprint analysis. Clin Infect Dis 1997;24:35-40.

30.

30. Burman WJ, Stone BL, Reves RR, Wilson ML, Yang Z, El-Hajj H, et al. The incidence of false-positive cultures for Mycobacterium tuberculosis . Am J Respir Crit Care Med 1997;155:321-6.

31.

31. Bauer J, Thomsen VO, Poulsen S, Andersen AB. False-positive results from cultures of Mycobacterium tuberculosis due to laboratory cross-contamination confirmed by restriction fragment length polymorphism. J Clin Microbiol 1997;35:988-91.

32.

32. Takeda K, Murase Y, Kawashima M, Suzukawa M, Suzuki J, Yamane A, et al. A case of Mycobacterium tuberculosis laboratory cross-contamination. J Infect Chemother 2019;25:610-4.

33.

33. Farnia P, Masjedi MR, Mirsaeidi M, Mohammadi F, Jallaledin G, Vincent V, et al. Prevalence of Haarlem I and Beijing types of Mycobacterium tuberculosis strains in Iranian and Afghan MDR-TB patients. J Infect 2006;53:331-6.

34.

34. Dahle UR, Sandven P, Heldal E, Caugant DA. Continued low rates of transmission of Mycobacterium tuberculosis in Norway. J Clin Microbiol 2003;41:2968-73.

35.

35. Godfrey-Faussett P, Sonnenberg P, Shearer SC, Bruce MC, Mee C, Morris L, et al. Tuberculosis control and molecular epidemiology in a South African gold-mining community. Lancet 2000;356:1066-71.

36.

36. Drobniewski FA, Gibson A, Ruddy M, Yates MD. Evaluation and utilization as a public health tool of a national molecular epidemiological tuberculosis outbreak database within the United Kingdom from 1997 to 2001. J Clin Microbiol 2003;41:1861-8.

37.

37. Burman WJ, Reves RR. Review of false-positive cultures for Mycobacterium tuberculosis and recommendations for avoiding unnecessary treatment. Clin Infect Dis 2000;31:1390-5.

38.

38. Larson JL, Lambert L, Stricof RL, Driscoll J, McGarry MA, Ridzon R. Potential nosocomial exposure to Mycobacterium tuberculosis from a bronchoscope. Infect Control Hosp Epidemiol 2003;24:825-30.

39.

39. Vluggen C, Soetaert K, Groenen G, Wanlin M, Spitaels M, Arrazola de Onate W, et al. Molecular epidemiology of Mycobacterium tuberculosis complex in Brussels, 2010-2013. PLoS One 2017;12:e0172554.

40.

40. Leylabadlo HE, Baghi HB, Fallahi L, Kafil HS. From sharing needles to unprotected sex: a new wave of HIV infections in Iran? Lancet HIV 2016;3:e461-2.

41.

41. Caminero JA, Pena MJ, Campos-Herrero MI, Rodriguez JC, Afonso O, Martin C, et al. Exogenous reinfection with tuberculosis on a European island with a moderate incidence of disease. Am J Respir Crit Care Med 2001;163(3 Pt 1):717-20.

42.

42. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 1997;35:907-14.

43.

43. Zhou A, Nawaz M, Xue X, Karakousis PC, Yao Y, Xu J. Molecular genotyping of Mycobacterium tuberculosis in Xi’an, China, using MIRU-VNTR typing. Int J Tuberc Lung Dis 2011;15:517-22.

44.

44. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rusch-Gerdes S, Willery E, et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis . J Clin Microbiol 2006;44:4498-510.

45.

45. Abascal E, Perez-Lago L, Martinez-Lirola M, Chiner-Oms A, Herranz M, Chaoui I, et al. Whole genome sequencing-based analysis of tuberculosis (TB) in migrants: rapid tools for cross-border surveillance and to distinguish between recent transmission in the host country and new importations. Euro Surveill 2019;24:1800005.

46.

46. Satta G, Atzeni A, McHugh TD. Mycobacterium tuberculosis and whole genome sequencing: a practical guide and online tools available for the clinical microbiologist. Clin Microbiol Infect 2017;23:69-72.

47.

47. Cirillo DM, Cabibbe AM, De Filippo MR, Trovato A, Simonetti T, Rossolini GM, et al. Use of WGS in Mycobacterium tuberculosis routine diagnosis. Int J Mycobacteriol 2016;5 Suppl 1:S252-3.

48.

48. Ayana DA, Kidanemariam ZT, Tesfaye HM, Milashu FW. External quality assessment for acid fast bacilli smear microscopy in eastern part of Ethiopia. BMC Res Notes 2015;8:537.

49.

49. Makeshkumar V, Madhavan R, Narayanan S. Polymerase chain reaction targeting insertion sequence for the diagnosis of extrapulmonary tuberculosis. Indian J Med Res 2014;139:161-6.

50.

50. Leylabadlo HE, Yekani M, Ghotaslou R. Helicobacter pylori hopQ alleles (type I and II) in gastric cancer. Biomed Rep 2016;4:601-4.

51.

51. Paiva VD, Staub FL, Valentini DF Jr, Barcellos RB, Schmid KB, Costa ER, et al. Polymerase chain reaction test in induced sputum of patients with pulmonary tuberculosis. Clin Respir J 2018;12:1865-71.

Tuberculosis & Respiratory Diseases