바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Kyung Mi Jang(Department of Pediatrics, Yeungnam University College of Medicine, Daegu, Korea) pp.1-6 https://doi.org/10.22742/JIG.2021.3.1.1
초록보기
Abstract

Maturity-onset diabetes of the young (MODY) is characterized by a heterogeneous group of monogenic diabetes. MODY has autosomal dominant inheritance, a primary defect in pancreatic β-cell, and an early onset. Discriminating MODY from type 1 or type 2 diabetes is often challenging at first. To date, 14 different disease causing mutations have been identified in MODY patients worldwide. Targeted DNA sequencing is the gold standard to diagnose MODY and their asymptomatic relatives. Next-generation sequencing may help successfully to diagnose MODY patients and identify new MODY genes. In this review, the current perspectives on diagnosis and treatment of MODY and discrepancy in the disease-causing mutations between the Asian and Caucasian patients with MODY are summarized.

Shinae Yu(Department of Laboratory Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea) pp.7-12 https://doi.org/10.22742/JIG.2021.3.1.7
초록보기
Abstract

Adverse drug reactions (ADRs) is a hypersensitivity reactions to specific medications, and remain a common and major problem in healthcare. ADRs suchc as drug-induced liver injury and life-threatening severe cutaneous adverse drug reactions including Stevens-Johnson syndrome, toxic epidermal necrolysis, and drug rash with eosinophilia and systemic symptoms can be occurred by uncontrolled expansion of oligoclonal T cells according to genetically predisposing HLA. In this review, I summarized the alleles of HLA genes which have been proposed to have association with ADRs caused by different drugs.

Su-Kyeong Hwang(Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, Korea) pp.13-20 https://doi.org/10.22742/JIG.2021.3.1.13
초록보기
Abstract

Developmental and epileptic encephalopathies are the most devastating early-onset epilepsies, characterized by early-onset seizures that are often intractable, electroencephalographic abnormalities, developmental delay or regression, and various comorbidities. A large number of underlying genetic variants of developmental and epileptic encephalopathies have been identified over the past few decades. However, the most thorough sequencing studies leave 60–65% of patients without a molecular diagnosis. This review explores the genetic basis of developmental and epileptic encephalopathies that start within the first year of life, including Ohtahara syndrome, early myoclonic encephalopathy, epilepsy of infancy with migrating focal seizures, infantile spasms, and Dravet syndrome. The purpose of this review is to give an overview and encourage the clinicians to start considering genetic testing as an important investigation along with electroencephalogram for better understanding and management of developmental and epileptic encephalopathies.

Jung Kwan Eun ; Mi Sun Lee ; Ji Min Lee ; Eun Joo Lee ; Sook-Hyun Park ; Cheol Woo Ko ; Jung-Eun Moon(Department of Pediatrics, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea) pp.21-24 https://doi.org/10.22742/JIG.2021.3.1.21
초록보기
Abstract

Purpose: Activating mutations of the calcium-sensing receptor (CASR) are a rare genetic disorder, and result in autosomal dominant hypocalcemia with hypercalciuria (ADHH). ADHH exhibited varying degrees of hypocalcemia. In this study, we report the clinical and molecular characteristics of activating variants in CASR patients diagnosed in Korea. Methods: This study included three patients with activating variants of CASR confirmed by biochemical and molecular analysis of CASR. Clinical and biochemical findings were reviewed chart retrospectively. Mutation analysis of CASR was performed by Sanger sequencing. Results: Subject 1 showed severe symptoms from the neonatal period and had difficulty in controlling the medications that were administered. Subject 2 was identified as having a novel variant of CASR with hypocalcemia and a low parathyroid hormone that were found in the neonatal period. During a course without medication, hypocalcemia occurred suddenly around 2 years of age. Subject 3 was diagnosed with hypoparathyroidism with hypocalcemic seizures starting from the neonatal period. About 4 years without taking medication with any symptom. However, at 10 years old revisited by repetitive hypocalcemic seizure events. Subject 1 and 3, were heterozygous for c.2474A>T (p.Y825F), c.2395G>A (p.E799K) located in the transmembrane domain (TMD) of CASR. Subject 2 was heterozygous for c.403A>C (S430L) located in the extracellular domain (ECD) of CASR. Conclusion: We reported 3 patients who have activating CASR variant with different onset and severity of symptoms. In the future, further study is needed to determine how the protein level according to the location of the mutation of CASR affects the degree of symptoms.

Journal of Interdisciplinary Genomics