바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

비글견 1벽성 골내낭에서 Poly Lactic-co Glycolic Acid (PLGA)/Inorganic Filler Matrix의 생체 친화성 및 흡수성에 대한 조직학적 연구

Histological Evaluation on the Biocompatibility and Degradation of Poly Lactic-co Glycolic Acid (PLGA) / Inorganic Filler Matrix in Surgically Created Intrabony 1-wall Defect in Beagle Dog.

Abstract

치주 질환으로 인하여 소실된 치주조직을 재생시키려는 여러 술식이 많이 연구되고 있다. 그 중 bioactive factor의 적용은 치주조직의 재생에 있어서 우수한 치료법으로 평가되고 있으며, 이를 수용부에 적절히 적용하기 위한 운반체로 생체친화적인 중합체가 이용되고 있다. 본 연구의 목적은 PLGA를 inorganic filler에 혼합시킨 재료를 성견의 일벽성 골내낭에 적용하여 이 재료의 생체 친화성과 생체 흡수도를 보고자 하는 것이다. 5마리의 비글견에서 제 3 소구치를 모두 발치한 뒤, 8주간의 치유기간이 지나고 제 2 소구치 원심면과 제 4 소구치 근심면에 5mm 깊이, 4mm폭의 일벽성 골내낭을 형성하였다. 좌측 defect에는 PLGA/inorganic filler matrix를 이식하였고 우측에는 아무것도 이식하지 않은 대조군으로 나누어 술 후 8주에 희생하여 치유 결과를 조직학적으로 비교 관찰하였다. 조직학적 분석 결과, 모든 결손부에서 염증의 소견이 관찰되지 않았으며 치근흡수와 유착은 발견되지 않았다. 백악질과 치조골, 치주인대를 포함한 치주조직의 재생에 있어서 대조군, 실험군 간에 조직학적으로 치유양상에 있어 차이를 많이 보이지 않았으며 PLGA/inorganic filler matrix는 8주 내에 완전히 흡수되어 결합조직이나 신생골내에서 그 흔적을 발견할 수 없었다. 이러한 결과는 PLGA/inorganic filler matrix는 생체친화성 및 생체흡수성이 우수한 재료로서 치주 조직의 재생 치료에 있어서 신체활성인자의 scaffold로 사용될 수 있는 가능성을 보여주었다.

keywords
PLGA, 운반체, 치주재생, 일벽성 골내낭

참고문헌

1.

1. Fujimura K, Bessho K, Kusumoto K, Ogawa Y, Iizuka T. Experimental studies on bone inducing activity of composites of atelopeptide type collagen as a carrier for ectopic osteoinduction by rhBMP-2. Biochem Biophys Res Commun 1995;208:316-322.

2.

2. Wang EA, Rosen V, D’Alessandro JS, Bauduy M, Cordes P, Harada T, Israel DI, Hewick RM, Kerns KM, LaPan P. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA 1990;87:2220-2224.

3.

3. Bessho K, Kusumoto K, Fujimura K, Konishi Y, Ogawa Y, Tani Y, Iizuka T. Comparison of recombinant human bone morphogenetic protein. Br J Oral Maxillofac Surg 1999;37:2?5.

4.

4. Bessho K. Lizuka T. The possibility of application of bone morphogenetic proteins(BMPs) for reconstruction of jaw bones. Oral Oncology 1995;4:304-307.

5.

5. Isobe M, Yamazali Y, Oida S, Ishihara K, Nakabayashi N, Amagasa T. Bone morphogenetic protein encapsulated with a biodegradable and biocompatible polymer. J Biomed Mater Res 1996;32:433-438.

6.

6. Bessho K, Carnes D.L, Ong J. L. Experimental studies on bone induction using low?molecular-weight poly(DL-lactideco- glycolide) as a carrier for recombinant human bone morphogenetic protein-2. J Biomed Mater Res 2002;61:61-65.

7.

7. Von Recum HA, Cleek RL, Eskin SG, Mikos AG. Degradation of polydispersed poly (L-lactic acid) to modulate lactic acid release. Biomaterials 1995;16:441-447.

8.

8. Vert M, Mauduit J, Li S. Biodegradation of PLA/GA polymers: Increasing complexity. Biomaterials 1994, 15:1209-1213.

9.

9. Gilding DK, Reed AM. Biodegradable polymers for use in surgery. Polyglycolic/poly(lactic acid) homo-and copolymers. I. Polymer 1979;20:1459-1464.

10.

10. Witschi C, Eoelker E. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(loctic-co-glycolic acid) degradation during in vitro testing. J Controlled Release 1998;51:327-341.

11.

11. Ramachandran Nair P. N, Schung. Observatiobs on healing of human tooth extraction sockets implanted with bioabsorbable polylactic-polyglycolic acids(PLGA) copolymer root replicas: A clinical, radiographic, and histologic follow?up report of 8 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;97:559-69.

12.

12. Peltoniemi H, Ashammakhi N, Kontio R, et al. The use of bioabsorbable osteofixation devices in craniomaxillofacial surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002;94:5-14.

13.

13. Serino G, Biancu S, Iezzi G, Piattelli A. Ridge perservation following tooth extraction using a polylactide and polyglycolide sponge as space filler: a clinical and histological study in humans. Clin. Oral Impl. Res. 2003;14:651-658.

14.

14. Laurencin, C.T. & Lanw, J.M.(1999) Poly-lactide acid and poly-glycolide acid: orthopedic and surgery applications. In: Tissue Engineering: Application in Maxillofacial Surgery and Periodontics, 325-339. Chicago: Quintessence Publishing Co. Inc.

15.

15. Holland, S.J., Tighe, B.J. & Gould, P.L.(1986) Polymers for biodegradable medical device, I. The potential of polyesters as controlled macromolecular release system. Journal of Controlled Release 4;155-180.

16.

16. Taba M Jr, Jin Q, Sugai JV, Giannobile WV. Current concepts in periodontal bioengineering. Orthop Craniofacial Res. 2005;8:292-302.

17.

17. Zhao M, Jin Q, Berry JE, Nociti FH Jr, Giannobile WV, Somerman MJ. Cementoblast delivery for periodontal tissue engineering. J Periodontol 2004;75:154-61.

18.

18. Matsumoto MA, Filho HN, Padovan LEM, Kawakami RY, Taverira LAA. Tissue response to poly-L-lactide acidpolycolic acid absorbable screws in autogenous bone grafts: a histologic morphological analysis. Clin. Oral Impl. Res. 2005;16:112-118.

19.

19. Giannobile W.V. Periodontal tissue engineering by growth factors. Bone 1996;19(1 Suppl): 235-375.

20.

20. Ripamonti U, Reddi AH. Periodontal regeneration: potential role of bone morphogenetic proteins. J Periodont Res 1994;29:225-235.

21.

21. Bartold P.M, Xiao Y, Lyngstaadas SP, Paine ML, Snead ML. Principles and applications of cell delivery systems for periodontal regeneration. Periodontol 2000. 2006;41:123-135.

22.

22. Minenna L, Herro F, Sanz M, Trombelli L. Adjunctive effect of a polylactide/polyglycolide copolymer in the treatment of deep periodontal intra-osseous defects: a randomized clinical trial. J Clin Periodontol 2005;32:456-461.

23.

23. Lee CH, SinglaA, Lee Y. Biomedical applications of collagen. Int J Pharm 2001:221;1-22.

24.

24. McPherson JM. The utility of collagen-based vehicles in delivery of growth factors for hard and soft tissue wound repair. Clin Mater 1992;9:225-234.

25.

25. Uludag H, Gao T, Porter TJ, Friess W, Wozney JM. Delivery systems for BMPs: factors contributing to protein retention at an application site. J Bone Joint Surg Am 2001;83-A Suppl 1:S128-135.

26.

26. Kleinman HK, Philp D, Hoffman MP. Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol 2003;14:526-532.

27.

27. Bartold PM, McCulloch CA, Narayanan AS, Pitaru S. Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000 2000;24:253-269.

28.

28. Kim CS, Choi SH, Cho KS, Chai JK, Wikesjo UM, Kim CK. Periodontal healing in one wall intrabony defects in dogs following implantation of autogenous bone or a coral?derived biomaterial. J Clin Periodontol 2005;32:583?589.

29.

29. Kim HY, Kim CS, Jhon GJ, et al. The effect of safflower seed extract on periodontal healing of 1-wall intrabony defects in beagle dogs. J Periodontol 2002;73:1457-1466.

30.

30. Garrett S. Periodontal regeneration around natural teeth. Ann Periodontol 1996;1:621-666.

31.

31. Minabe M. A critical review of the biologic rational for guided tissue regeneration. J Periodontol 1991;62:171-179.

32.

32. Seeherman H. The influence of delivery vehicles and their properties on the repair of segmental defects and fractures with osteogenic factors. J Bone Joint Surg Am 2001;83-A Suppl 1:S79-81.

33.

33. Van Sliedregt A, Radder AM, De Groot K, Van Blitterswijk CA. In vitro biocompatibility testing of polylactides Part Ⅰ Proloferation of different cell types. J Mater Sci Mater Med 1992;3:365-370.

34.

34. Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS. Orthopaedic applications for PLA/PGA biodegradable polymers. The journal of arthroscopic and related surgery. 1998;14(7):726-737.

35.

35. Herberg S, Siedler M, Pippig S, Schuetz A, Dony C. Kim CK, Wikesjo U.M.E. Development of an injectable composite as a carrier for growth factor-enhanced periodontal regeneration. J Clin Periodontol 2008;35:976-984.

logo