바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

치의학 분야에서 SPSS를 이용한 일반화 추정방정식의 단계별 안내

A step-by-step guide to Generalized Estimating Equations using SPSS in dental research

Abstract

The Generalized Estimating Equations (GEE) approach is a widely used statistical method for analyzing longitudinal data and clustered data in clinical studies. In dentistry, due to multiple outcomes obtained from one patient, the outcomes produced from an individual patient are correlated with one another. This study focused on the basic ideas of GEE and introduced the types of covariance matrix and working correlation matrix. The quasi-likelihood information criterion (QIC) and quasi-likelihood information criterion approximation (QICu) were used to select the best working correlation matrix and the best fitting model for the correlated outcomes. The purpose of this study is to show a detailed process for the GEE analysis using SPSS software along with an orthodontic miniscrew example, and to help understand how to use GEE analysis in dental research.

keywords
Generalized Estimating Equations, clustered data, dental research

참고문헌

1.

1. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986;73(1):13-22.

2.

2. Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986;42(1):121-130.

3.

3. Nelder JA, Wedderburn RWM. Generalized linear models. J R Stat Soc Series A 1972;135(3):370-84.

4.

4. 임회정. SAS를 이용한 고급의학 통계 및 예제. 1판1쇄. 서울. 경문사. 2004.

5.

5. Zeger SL, Liang KY, Albert PS. Models for Longitudinal Data: A Generalized Estimating Equation Approach. Biometrics 1988;44(4):1049-60.

6.

6. 월간전자기술 편집위원회. 전자용어사전(E+). 개정판 3쇄. 성안당. 2007.

7.

7. Pan W. Akaike's information criterion in generalized estimating equations. Biometrics 2001;57(1):120-5.

8.

8. Rotnitzky A, Jewell NP. Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika 1990;77(3):485-97.

9.

9. Hin LY, Wang YG. Working-correlation-structure identification in generalized estimating equations. Stat Med 2009;28(4):642-58.

10.

10. Gosho M, Hamada C, Yoshimura I. Criterion for the selection of a working correlation structure in the generalized estimating equation approach for longitudinal balanced data. Commun Stat Theory Methods 2011;40(21):3839-56.

11.

11. Hedeker D, Gibbons RD. Longitudinal Data Analysis. New Jersey. John Wiley & Sons. Inc. 2006.

12.

12. 한국교육평가위원회. 교육평가 용어사전. 학지사. 2004.

13.

13. Zeger SL. The analysis of discrete longitudinal data: Commentary. Statistics in Medicine 1988;7(1-2):161-8.

14.

14. McDonald BW. Estimating logistic regression parameters for bivariate binary data. J R Stat Soc Series B 1993;55(2):391-7.

15.

15. Fitzmaurice GM. A caveat concerning independence estimating equations with multiple multivariate binary data. Biometrics 1995;51(1):309-17.

16.

16. 한국기상학회, 기상청. 대기과학용어사전(최신). 시그마프레스. 2015.

17.

17. McCullagh P, Nelder JA. Generalized Linear Models. 2nd ed. London: Chapman & Hall. 1989.

18.

18. Lindsay BG. Composite Likelihood Methods. Contemporary Mathematics. 1988;80(1):221-39.

19.

19. Davidson R, MacKinnon J. Econometric Theory and Methods. New York, NY: Oxford University Press. 2004.

20.

20. Cui J. QIC program and model selection in GEE analyses. Stata Journal 2007;7(2):209-20.

21.

21. Hong SB, Kusnoto B, Kim EJ, BeGole EA, Hwang HS, Lim HJ. Prognostic factors associated with the success rates of posterior orthodontic miniscrew implants: A subgroup meta-analysis. Korean J Orthod 2016;46(2):111-26.

22.

22. Lim HJ, Choi YJ, Evans CA, Hwang HS. Predictors of initial stability of orthodontic miniscrew implants. Eur J Orthod 2011;33(5):528-32.

23.

23. Lim HJ, Eun CS, Cho JH, Lee KH, Hwang HS. Factors associated with initial stability of miniscrews for orthodontic treatment. Am J Orthod Dentofacial Orthop 2009;136(2):236-42.

logo