Article Detail

Home > Article Detail
  • P-ISSN 1010-0695
  • E-ISSN 2288-3339

Classification of the Efficacy of Herbal Medicine Alterations in Neuronal Hypoxia Models through Analysis of Gene Expression

Journal of Korean Medicine / Journal of Korean Medicine, (P)1010-0695; (E)2288-3339
2014, v.35 no.4, pp.36-51



  • Downloaded
  • Viewed

Abstract

Objectives: cDNA microarray is an effective method to snapshot gene expression. Functional clustering of gene expressions can identify herbal medicine mechanisms. Much microarray data is available for various herbal medicines. This study compares regulated genes with herbal medicines to evaluate the nature of the drugs. Methods: Published microarray data were collected. Total RNAs were prepared from dissociated hippocampal dissociate cultures which were given hypoxic shock in the presence of each herbal medicine. Up- or downregulated genes higher than Global M value 0.5 were selected, clustered in functional groups, and compared with various herbal treatments. Results: 1.Akt2 was upregulated by Acorus gramineus SOLAND, Arisaema amurense var. serratum NAKAI and Coptis chinensis FRANCH, and they belong to Araceae herb. 2.Nf-κb1, Cd5, Gnγ7 and Sgne1 were upregulated by Arisaema amurense var. serratum NAKAI, Coptis chinensis FRANCH and Rheum coreanum NAKAI. 3.Woohwangcheongsim -won, Sohaphyang-won and Scutellaria baicalensis GEORGI downregulated Scp2 and upregulated Tsc2. Woohwangcheongsim-won and Sohaphyang-won upregulated Hba1 and downregulated Myf6. 4.Sohaphyang-won and Scutellaria baicalensis GEORGI downregulated Slc12a1. 5.Woohwangcheongsim-won and Arisaema amurense var. serratum NAKAI upregulated Rarα, Woohwangcheongsim-won and Coptis chinensis FRANCH downregulated Rab5a and Pdgfrα, and Woohwangcheongsim-won and Rheum coreanum NAKAI upregulated Plcγ1 and downregulated Pla2g1b and Slc10a1. Conclusions: By clustering microarray, genes are commonly identified to be either up- or downregulated. These results will provide new information to understand the efficacy of herbal medicines and to classify them at the molecular level.

keywords
Hypoxia, apoptosis, gene expression, microarray


Reference

1

1. Honig LS, Rosenberg RN. Apoptosis and neurologic disease. Am J Med. 2000;108(4):317-30.

2

2. Rego AC, Oliveira CR. Mitochondrial Dysfunction and Reactive Oxygen Species in Excitotoxicity and Apoptosis: Implications for the Pathogenesis of Neurodegenerative Diseases. Neurochem Res. 2003;28(10):1563-74.

3

3. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001;209:860-921.

4

4. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796-815.

5

5. Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, et al. Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc Natl Acad Sci USA. 2000;97:9127-32.

6

6. Harrington CA, Rosenow C, Retief J. Monitoring gene expression using DNA microarrays. Curr Opin Microbiol. 2000;3:285-91.

7

7. Park DJ, Jung SH, Moon IS, Lee WC, Shin GC. Microarray Analysis of Alteration in Gene Expression by Acori graminei rhizoma (AGR)Water-Extract in a Hypoxic Model of Cultured Rat Cortial Cells. J Life Science. 2007;17(1):150-61.

8

8. Koh KD. Effects of Arisaema amurense var. serratum NAKAI(南星) on the modulation of ROS, MMP and Gene Expression in a Hypoxic Model of Cultured Rat Cortical Cells. The graduate school of Dongguk Uni. 2003.

9

9. Kwon GR. Rizoma(半夏) on Prevention of Cortical Neuronal Cell Death and Gene Expression. The graduate school of Dongguk Uni. 2005.

10

10. Kim SB, Chung SH, Shin GC, Lee WC. Effects of Scutellaria baicalensis GEORGI on Gene Expression in a Hypoxic Model of Cultured Rat Cortical Cells. Korean J Orient Int Med. 2004;25(4-2):324-36.

11

11. Hwang JW, Kim KH, Shin GC, Moon IS. Efeects of Gene Expression by Coptidis chinesis FRANCH. in a Hypoxic Model of Cultured Rat Cortical Cells. Korean J Orient Int Med. 2011;32(2):301-21.

12

12. Lee HS, Lee JY, Moon IS. Microarray Analysis of Gene Expression by Rhei Rhizoma Water Extracts in a Hypoxia Model of Cultured Neurons. J Life Sci. 2009;19(1):21-33.

13

13. Park DW, Kim WS, Bae CH, Jeong SH, Shin GC, Lee WC. Effects of Woohwangcheongsim -won Gene Expression in a Hypoxic Model of Cultured Rat Cortical Cells. J Korean Oriental Med. 2004;25(3):123-36.

14

14. Paik JW, Lee YH, Kim WS, Jeong SH, Shin GC, Lee WC. Effects of Sohaphyang-won Gene Expression in a Hypoxic Model of Cultured Rat Cortical Cells. J Korean Oriental Med. 2004;25(2):127-37.

15

15. Sturn A, Quackenbush J, Trajanoski Z. Genesis:cluster analysis of microarray data. Bioinformatics. 2002;18(1):207-8.

16

16. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998;95(25):14863-8.

17

17. Zimmermann KC, Green DR. How cells die:Apoptosis pathways. J Allergy Clin Immunol. 2001;108(4):99-103.

18

18. Hochachka PW, Lutz PL. Mechanism, origin, and evolution of anoxia tolerance in animals. Comp Biochem Physiol B: Biochem Mol Biol. 2001;130(4):435-59.

19

19. Won MH. Noeheohyeole Uihan Jiyeonseong Singyeongseposaui Gijeon. Biochemistry News. 2002;22(2):158-68.

20

20. Banasiaka KJ, Xiab Y, Haddad GG. Mechanisms underlying hypoxia-induced neuronal apoptosis. Prog Neurobiol. 2000;62(3):215-49.

21

21. Wang H, Yu SW, Koh DW, Lew J, Coombs C, Bowers W, et al. Apoptosis-Inducing Factor Substitutes for Caspase Executioners in NMDA-Triggered Excitotoxic Neuronal Death. J. Neurosci. 2004;24(48):10963-73.

22

22. Nieminen AL. Apoptosis and necrosis in health and disease: Role of mitochondria. Int Rev Cytol. 2003;224:29-55.

23

23. Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genet. 2001;28:131-8.

24

24. Oh MK. Research Trends of Bioinformatics Using DNA Microarray Data. Pros Ind Chem. 2006;9(5):43-8.

25

25. Shih JH, Michalowska AM, Dobbin K, Ye Y, Qiu TH, Green JE. Effects of pooling mRNA in microarray class comparisons. Bioinformatics. 2004;20(18):3318-25.

26

26. Fujio Y, Mitsuuchi Y, Testa JR, Walsh K. Activation of Akt2 Inhibits anoikis and apoptosis induced by myogenic differentiation. Cell Death Differ. 2001;8(12):1207-12.

27

27. Sinmunpungchulpangongsa. Sinpyeonjungyakdaesajeon. Chopan. 1981:113-9,333-7,2107-16.

28

28. Pizzi M, Goffi F, Boroni F, Benarese M, Perkins SE, Liou HC, et al. Opposing Roles for NF-κB/Rel Factors p65 and c-Rel in the Modulation of Neuron Survival Elicited by Glutamate and Interleukin-1β. J Biol Chem. 2002;277:20717-23.

29

29. Pizzi M, Sarnico I, Boroni F, Benetti A, Benarese M, Spano PF. Inhibition of IκBα phosphorylation prevents glutamate-induced NF-κB activation and neuronal cell death. Acta Neurochir. 2005;93:59-63.

30

30. Krumschnabel G, Sohm B, Bock F, Manzl C, Villunger A. The enigma of caspase-2: the laymen's view. Cell Death Differ. 2009;16: 195-207.

31

31. Ohta1 M, Mimori K, Fukuyoshi Y, Kita Y, Motoyama K, Yamashita K, et al. Clinical significance of the reduced expression of G protein gamma 7 (GNG7) in oesophageal cancer. Brit J Cancer. 2008:98;410-7.

32

32. Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4:648-57.

33

33. Inoki K, Zhu T, Guan KL. TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival. Cell. 2003;115(5): 577-90.

34

34. Offenberg HH, Schalk JAC, Meuwissen RLJ, Aalderen M, Kester HA, Dietrich AJJ, Heyting C. SCP2: A major protein component of the axial elements of synaptonemal complexes of the rat. Nucl Acids Res. 1998;26(11):2572-9.

35

35. Liang WS, Dunckley T, Beach TG, Grover A, Mastroeni D, Walker DG, et al. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol Genomics. 2007;28:311-22.

36

36. Kassar-Duchossoy L, Gayraud-Morel B, Gomès D, Rocancourt D, Buckingham M, Shinin V, et al. Mrf4 determines skeletal muscle identity in Myf5: Myod double-mutant mice. Nature. 2004;431:466-71.

37

37. Hinitsa Y, Osborna DPS, Carvajalb JJ, Rigbyb PWJ, Hughes SM. Mrf4 (myf6) is dynamically expressed in differentiated zebrafish skeletal muscle. Gene Expression Patterns. 2007;7(7):738-45.

38

38. Hannemann A, Christie JK, Flatman PW. Functional Expression of the Na-K-2Cl Cotransporter NKCC2 in Mammalian Cells Fails to Confirm the Dominant-negative Effect of the AF Splice Variant. J Biol Chem. 2004;284:35348-58.

39

39. Gavalas A, Krumlauf R. Retinoid signalling and hindbrain patterning. Curr Opin Genet Dev. 2000;10(4):380-6.

40

40. Hellberg C, Schmees C, Karlsson S, Åhgren A, Heldin CH. Activation of Protein Kinase C Is Necessary for Sorting the PDGF β-Receptor to Rab4a-dependent Recycling. Mol Biol Cell. 2009;20:2856-63.

41

41. MacDonald TJ, Brown KM, LaFleur B, Peterson K, Lawlor C, Chen Y, et al. Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet. 2001;29:143-52.

42

42. Lawson ND, Mugford JW, Diamond BA, Weinstein BM. phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev. 2003;17:1346-51.

43

43. Hui DY, Cope MJ, Labonté ED, Chang H-T, Shao J, Goka E, et al. The phospholipase A2 inhibitor methyl indoxam suppresses diet-induced obesity and glucose intolerance in mice. Brit J Pharmacol. 2009;157(7):1263-9.

44

44. Mita S, Suzuki H, Akita H, Hayashi H, Onuki R, Hofmann AF, et al. Inhibition of Bile Acid Transport across Na+/Taurocholate Cotransporting Polypeptide (SLC10A1) and Bile Salt Export Pump (ABCB 11)-Coexpressing LLC-PK1 Cells by Cholestasis-Inducing Drugs. Drug Metab Dispo. 2009;34(9):1575-81.

  • Downloaded
  • Viewed
  • 0KCI Citations
  • 0WOS Citations

Other articles from this issue

Recommanded Articles

상단으로 이동

Journal of Korean Medicine