Article Detail

Home > Article Detail
  • P-ISSN 1010-0695
  • E-ISSN 2288-3339

The Effects of Posture and the Ratio of Inhalation and Exhalation on Heart Rate Variability

Journal of Korean Medicine / Journal of Korean Medicine, (P)1010-0695; (E)2288-3339
2016, v.37 no.1, pp.114-124


  • Downloaded
  • Viewed

Abstract

Objectives: The aim of this study is to find what effects both the posture of sitting and standing and the ratio of inhalation and exhalation (I/E) have on heart rate variability (HRV) Methods: We made two breathing sets with 4:6 or 6:4 ratios of I/E at 0.1 Hz of respiratory frequency and sitting or standing position. There was 20 minute-rest between sets. Each set include 5 minute-3 breathings as follows: 0.1Hz paced breath with sitting, usual breathing with standing and 0.1Hz paced breath with standing. Five minute-usual breathings with sitting as basal lines were exerted before and after these 3 breaths. Electrocardiogram-recording was exerted from 73 healthy participants (37 men and 36 women) who carried out two sets of breathings. Finally, HRV indices were analyzed of 62 participants (32 men and 30 women). Results: In 4:6 maintaining the same posture, SDNN were statistically increased, while mean heart rate(HR) were not changed. In 6:4, mean HR, SDNN were statistically increased. When changed from sitting to standing, in 4:6, SDNN were statistically decreased and mean HR was increased. However, in 6:4 during change of posture, SDNN were also statistically decreased and mean HR was statistically decreased. There was no statistical change of HF during 4:6 or 6:4 ratios of I/E moving from sitting to standing position. Conclusions: For increasing HRV, breathing in low respiratory rate with sitting was recommended regardless of ratio of I/E. In changing from sitting to standing, 4:6 may increase mean HR, and 6:4 may decrease mean HR.

keywords
Heart rate Variability, Respiration, Posture, Inhalation, Exhalation


Reference

1

1. Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability. Front Psychol. 2014;5:1040.

2

2. Sasaki K, Maruyama R. Consciously controlled breathing decreases the high-frequency component of heart rate variability by inhibiting cardiac parasympathetic nerve activity. Tohoku J Exp Med. 2014;233(3):155-63.

3

3. Vinay AV, Venkatesh D, Ambarish V. Impact of short-term practice of yoga on heart rate variability. Int J Yoga. 2016;9(1):62-6.

4

4. Yang DH, Park YB, Park YJ. Relative Timing of Inspiration and Expiration Affects Heart Rate Variability - Between Regulated Respiration and Control Group -. The Journal Of The Korea Institute Of Oriental Medical Diagnostics. 2007;11(1):146-156.

5

5. Prado ET, Raso V, Scharlach RC, Kasse CA. Hatha yoga on body balance. Int J Yoga. 2014;7(2):133-7.

6

6. Larsen PD, Tzeng YC, Sin PY, Galletly DC. Respiratory sinus arrhythmia in conscious humans during usual respiration. Respir Physiol Neurobiol. 2010;174(1-2):111-8.

7

7. Hirsch JA, Bishop B. Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol. 1981; 241(4):H620-9.

8

8. Task force the European society of cardiology and the North American society of pacing and electrophysiology, Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17(3):354-81.

9

9. Moak JP, Goldstein DS, Eldadah BA, Saleem A, Holmes C, Pechnik S, et al. Supine low-frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Cleve Clin J Med. 2009;76 Suppl 2:S51-9.

10

10. Rahman F, Pechnik S, Gross D, Sewell L, Goldstein DS. Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Clin Auton Res. 2011;21(3):133-41.

11

11. Malliani A. Heart rate variability: from bench to bedside. Eur J Intern Med. 2005;16(1):12-20.

12

12. Grossman P, Taylor EW. Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol. 2007;74(2):263-85.

13

13. Sztajzel J. Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med Wkly. 2004;134(35-36):514-22.

14

14. Jung DS, Park JH, Park SJ, Han CH, Lee SN. The effect of Qigong position on Heart rate variability. Korea J Orient Med. 2011;17(2):85-100.

15

15. Gevirtz R.The Promise of Heart Rate Variability Biofeedback: Evidence-Based Applications. Biofeedback. 2013;41(3):110–20.

16

16. Jan BU, Coyle SM, Oikawa LO, Lu S-E, Calvano SE, Lehrer PM, et al. Influence of acute epinephrine infusion on endotoxin-induced parameters of heart rate variability: a randomized controlled trial. Ann Surg. 2009; 249(5):750–6.

17

17. Schroeder EB, Liao D, Chambless LE, Prineas RJ, Evans GW, Heiss G. Hypertension, Blood Pressure, and Heart Rate Variability The Atherosclerosis Risk in Communities (ARIC)Study. Hypertension. 2003;42(6):1106–11.

18

18. Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH. Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav Med Publ Soc Behav Med. 2009;37(2):141–53.

  • Downloaded
  • Viewed
  • 0KCI Citations
  • 0WOS Citations

Other articles from this issue

Recommanded Articles

상단으로 이동

Journal of Korean Medicine