ISSN : 2765-2203
Detrimental effects of inbreeding have been studied by many researchers for a long time. However, only a few studies have shown the occurrence of inbreeding depression due to evolutionary changes as a purging process. In this study, two different populations (inbreeding and outbreeding) of Drosophila melanogaster were compared to assess inbreeding effects on artificial population bottlenecks. For inbreeding conditions, a couple of D. melanogaster (one virgin and one male) were selected from an inbred population and cultured in a vial. For outbreeding conditions, a couple of D. melanogaster were selected from different populations and cultured in a vial. There were significant differences in body lengths of adults, but not in other parameters such as the total number of adults, the rate of survival, and the rate of wing mutants. The mean body length of adults of outbreeding populations was longer than that of inbreeding populations in the first generation (G1; P = 0.004), but not in the second generation (G2; P = 0.066). Although the other three parameters (total number of adults, rate of survival, and rate of wing mutants) showed differences in their mean values between inbreeding and outbreeding populations, these differences were not statistically significant. This might be due to genetic purging. This study demonstrated one additional experimental case related to inbreeding depression in artificial bottlenecked populations. Further studies are necessary to confirm the clear interaction between inbreeding depression and genetic purging using more generations and replicates (or samples) of D. melanogaster.