바로가기메뉴

본문 바로가기 주메뉴 바로가기

Sputum Inflammometry to Manage Chronic Obstructive Pulmonary Disease Exacerbations: Beyond Guidelines

Tuberculosis & Respiratory Diseases / Tuberculosis & Respiratory Diseases,
2020, v.83 no.3, pp.175-184
https://doi.org/10.4046/trd.2020.0033
Carmen Venegas (McMaster University)
Nan Zhao (McMaster University)
Terence Ho (McMaster University)
Parameswaran Nair (McMaster University)
  • Downloaded
  • Viewed

Abstract

Quantitative sputum cytometry facilitates in assessing the nature of bronchitis associated with exacerbations of chronic obstructive pulmonary disease (COPD). This is not assessed in most clinical trials that evaluate the effectiveness of strategies to prevent or to treat exacerbations. While up to a quarter of exacerbations may be associated with raised eosinophil numbers, the vast majority of exacerbations are associated with neutrophilic bronchitis that may indicate airway infections. While eosinophilia may be a predictor of response to corticosteroids (oral and inhaled), the limited efficacy of anti–interleukin 5 therapies would suggest that eosinophils may not directly contribute to those exacerbations. However, they may contribute to airspace enlargement in patients with COPD through various mechanisms involving the interleukin 13 and matrix metalloprotease pathways. The absence of eosinophils may facilitate in limiting the unnecessary use of corticosteroids. The presence of neutrophiia could prompt an investigation for the specific pathogens in the airway. Additionally, sputum measurements may also provide insight into the mechanisms of susceptibility to airway infections. Iron within sputum macrophages, identified by hemosiderin staining (and by more direct quantification) may impair macrophage functions while the low levels of immunoglobulins in sputum may also contribute to airway infections. The assessment of sputum at the time of exacerbations thus would facilitate in customizing treatment and treat current exacerbations and reduce future risk of exacerbations.

keywords
Pulmonary Disease, Chronic Obstructive, Bronchitis, Sputum Cell Count, Eosinophil, Infective Exacerbations

Reference

1.

1. Hurst JR, Vestbo J, Anzueto A, Locantore N, Mullerova H, Tal-Singer R, et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med 2010;363:1128-38.

2.

2. Soler-Cataluna JJ, Martinez-Garcia MA, Roman Sanchez P, Salcedo E, Navarro M, Ochando R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax 2005;60:925-31.

3.

3. Woodruff PG, Agusti A, Roche N, Singh D, Martinez FJ. Current concepts in targeting chronic obstructive pulmonary disease pharmacotherapy: making progress towards personalised management. Lancet 2015;385:1789-98.

4.

4. Singh D, Agusti A, Anzueto A, Barnes PJ, Bourbeau J, Celli BR, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: the GOLD science committee report 2019. Eur Respir J 2019;53:1900164.

5.

5. Bourbeau J, Bhutani M, Hernandez P, Aaron SD, Balter M, Beauchesne MF, et al. Canadian Thoracic Society clinical practice guideline on pharmacotherapy in patients with COPD: 2019 update of evidence. Can J Respir Crit Care Sleep Med 2019;3:210-32.

6.

6. Wedzicha JA, Decramer M, Ficker JH, Niewoehner DE, Sandstrom T, Taylor AF, et al. Analysis of chronic obstructive pulmonary disease exacerbations with the dual bronchodilator QVA149 compared with glycopyrronium and tiotropium (SPARK): a randomised, double-blind, parallel-group study. Lancet Respir Med 2013;1:199-209.

7.

7. Wedzicha JA, Banerji D, Chapman KR, Vestbo J, Roche N, Ayers RT, et al. Indacaterol-glycopyrronium versus salmeterol-fluticasone for COPD. N Engl J Med 2016;374:2222-34.

8.

8. Farne HA, Cates CJ. Long-acting beta2-agonist in addition to tiotropium versus either tiotropium or long-acting beta2-agonist alone for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2015;(10):CD008989.

9.

9. Lipson DA, Barnhart F, Brealey N, Brooks J, Criner GJ, Day NC, et al. Once-daily single-inhaler triple versus dual therapy in patients with COPD. N Engl J Med 2018;378:1671-80.

10.

10. Papi A, Vestbo J, Fabbri L, Corradi M, Prunier H, Cohuet G, et al. Extrafine inhaled triple therapy versus dual bronchodilator therapy in chronic obstructive pulmonary disease (TRIBUTE):a double-blind, parallel group, randomised controlled trial. Lancet 2018;391:1076-84.

11.

11. Suissa S, Dell’Aniello S, Ernst P. Comparative effects of LAMALABA-ICS vs LAMA-LABA for COPD: cohort study in realworld clinical practice. Chest 2020;157:846-55.

12.

12. Fan VS, Gaziano JM, Lew R, Bourbeau J, Adams SG, Leatherman S, et al. A comprehensive care management program to prevent chronic obstructive pulmonary disease hospitalizations:a randomized, controlled trial. Ann Intern Med 2012;156:673-83.

13.

13. Aboumatar H, Naqibuddin M, Chung S, Chaudhry H, Kim SW, Saunders J, et al. Effect of a hospital-initiated program combining transitional care and long-term self-management support on outcomes of patients hospitalized with chronic obstructive pulmonary disease: a randomized clinical trial. JAMA 2019;322:1371-80.

14.

14. Zwerink M, Brusse-Keizer M, van der Valk PD, Zielhuis GA, Monninkhof EM, van der Palen J, et al. Self management for patients with chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2014;(3):CD002990.

15.

15. Ho T, Dasgupta A, Hargreave FE, Nair P. The use of cellular and molecular biomarkers to manage COPD exacerbations. Expert Rev Respir Med 2017;11:403-11.

16.

16. Pizzichini E, Pizzichini MM, Efthimiadis A, Evans S, Morris MM, Squillace D, et al. Indices of airway inflammation in induced sputum: reproducibility and validity of cell and fluidphase measurements. Am J Respir Crit Care Med 1996;154(2Pt 1):308-17.

17.

17. Pizzichini MM, Popov TA, Efthimiadis A, Hussack P, Evans S, Pizzichini E, et al. Spontaneous and induced sputum to measure indices of airway inflammation in asthma. Am J Respir Crit Care Med 1996;154(4 Pt 1):866-9.

18.

18. Iredale MJ, Wanklyn SA, Phillips IP, Krausz T, Ind PW. Noninvasive assessment of bronchial inflammation in asthma:no correlation between eosinophilia of induced sputum and bronchial responsiveness to inhaled hypertonic saline. Clin Exp Allergy 1994;24:940-5.

19.

19. Pavord ID, Pizzichini MM, Pizzichini E, Hargreave FE. The use of induced sputum to investigate airway inflammation. Thorax 1997;52:498-501.

20.

20. Belda J, Leigh R, Parameswaran K, O’Byrne PM, Sears MR, Hargreave FE. Induced sputum cell counts in healthy adults. Am J Respir Crit Care Med 2000;161(2 Pt 1):475-8.

21.

21. Wilson AM, Leigh R, Hargreave FE, Pizzichini MM, Pizzichini E. Safety of sputum induction in moderate-to-severe smoking-related chronic obstructive pulmonary disease. COPD 2006;3:89-93.

22.

22. Gao P, Gibson PG, Zhang J, He X, Hao Y, Li P, et al. The safety of sputum induction in adults with acute exacerbation of COPD. Clin Respir J 2013;7:101-9.

23.

23. Vlachos-Mayer H, Leigh R, Sharon RF, Hussack P, Hargreave FE. Success and safety of sputum induction in the clinical setting. Eur Respir J 2000;16:997-1000.

24.

24. Bhowmik A, Seemungal TA, Sapsford RJ, Devalia JL, Wedzicha JA. Comparison of spontaneous and induced sputum for investigation of airway inflammation in chronic obstructive pulmonary disease. Thorax 1998;53:953-6.

25.

25. Siva R, Green RH, Brightling CE, Shelley M, Hargadon B, McKenna S, et al. Eosinophilic airway inflammation and exacerbations of COPD: a randomised controlled trial. Eur Respir J 2007;29:906-13.

26.

26. D’Silva L, Hassan N, Wang HY, Kjarsgaard M, Efthimiadis A, Hargreave FE, et al. Heterogeneity of bronchitis in airway diseases in tertiary care clinical practice. Can Respir J 2011;18:144-8.

27.

27. Aaron SD, Vandemheen KL, Fergusson D, Maltais F, Bourbeau J, Goldstein R, et al. Tiotropium in combination with placebo, salmeterol, or fluticasone-salmeterol for treatment of chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med 2007;146:545-55.

28.

28. Magnussen H, Disse B, Rodriguez-Roisin R, Kirsten A, Watz H, Tetzlaff K, et al. Withdrawal of inhaled glucocorticoids and exacerbations of COPD. N Engl J Med 2014;371:1285-94.

29.

29. Chapman KR, Hurst JR, Frent SM, Larbig M, Fogel R, Guerin T, et al. Long-term triple therapy de-escalation to indacaterol/glycopyrronium in patients with chronic obstructive pulmonary disease (SUNSET): a randomized, double-blind, triple-dummy clinical trial. Am J Respir Crit Care Med 2018;198:329-39.

30.

30. Wang H, Dasgupta A, Lee KA, Cook RJ, Nair P. Changing pattern of sputum cell counts during successive exacerbations of chronic obstructive pulmonary disease. COPD 2015;12:628-35.

31.

31. D’Silva L, Gafni A, Thabane L, Jayaram L, Hassack P, Hargreave FE, et al. Cost analysis of monitoring asthma treatment using sputum cell counts. Can Respir J 2008;15:370-4.

32.

32. Mittmann N, Kuramoto L, Seung SJ, Haddon JM, Bradley-Kennedy C, Fitzgerald JM. The cost of moderate and severe COPD exacerbations to the Canadian healthcare system. Respir Med 2008;102:413-21.

33.

33. George L, Brightling CE. Eosinophilic airway inflammation:role in asthma and chronic obstructive pulmonary disease. Ther Adv Chronic Dis 2016;7:34-51.

34.

34. Hastie AT, Martinez FJ, Curtis JL, Doerschuk CM, Hansel NN, Christenson S, et al. Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity:an analysis of the SPIROMICS cohort. Lancet Respir Med 2017;5:956-67.

35.

35. Tashkin DP, Miravitlles M, Celli BR, Metzdorf N, Mueller A, Halpin DM, et al. Concomitant inhaled corticosteroid use and the risk of pneumonia in COPD: a matched-subgroup post hoc analysis of the UPLIFT(R) trial. Respir Res 2018;19:196.

36.

36. Papi A, Bellettato CM, Braccioni F, Romagnoli M, Casolari P, Caramori G, et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med 2006;173:1114-21.

37.

37. Pizzichini E, Pizzichini MM, Gibson P, Parameswaran K, Gleich GJ, Berman L, et al. Sputum eosinophilia predicts benefit from prednisone in smokers with chronic obstructive bronchitis. Am J Respir Crit Care Med 1998;158(5 Pt 1):1511-7.

38.

38. Leigh R, Pizzichini MM, Morris MM, Maltais F, Hargreave FE, Pizzichini E. Stable COPD: predicting benefit from high-dose inhaled corticosteroid treatment. Eur Respir J 2006;27:964-71.

39.

39. Yun JH, Lamb A, Chase R, Singh D, Parker MM, Saferali A, et al. Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2018;141:2037-47.

40.

40. Turato G, Semenzato U, Bazzan E, Biondini D, Tine M, Torrecilla N, et al. Blood eosinophilia neither reflects tissue eosinophils nor worsens clinical outcomes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2018;197:1216-9.

41.

41. Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med 2011;365:1088-98.

42.

42. Hambly N, Nair P. Monoclonal antibodies for the treatment of refractory asthma. Curr Opin Pulm Med 2014;20:87-94.

43.

43. Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON, et al. Mepolizumab for severe eosinophilic asthma (DREAM):a multicentre, double-blind, placebo-controlled trial. Lancet 2012;380:651-9.

44.

44. Bleecker ER, FitzGerald JM, Chanez P, Papi A, Weinstein SF, Barker P, et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting beta2-agonists (SIROCCO):a randomised, multicentre, placebo-controlled phase 3 trial. Lancet 2016;388:2115-27.

45.

45. Mukherjee M, Sehmi R, Nair P. Anti-IL5 therapy for asthma and beyond. World Allergy Organ J 2014;7:32.

46.

46. Pavord ID, Chanez P, Criner GJ, Kerstjens HAM, Korn S, Lugogo N, et al. Mepolizumab for eosinophilic chronic obstructive pulmonary disease. N Engl J Med 2017;377:1613-29.

47.

47. Orfanakis NG, Ostlund RE, Bishop CR, Athens JW. Normal blood leukocyte concentration values. Am J Clin Pathol 1970;53:647-51.

48.

48. Juul S, Pliskin JS, Fineberg HV. Variation and information in white blood cell differential counts. Med Decis Making 1984;4:69-80.

49.

49. Dasgupta A, Kjarsgaard M, Capaldi D, Radford K, Aleman F, Boylan C, et al. A pilot randomised clinical trial of mepolizumab in COPD with eosinophilic bronchitis. Eur Respir J 2017;49:1602486.

50.

50. Criner GJ, Celli BR, Brightling CE, Agusti A, Papi A, Singh D, et al. Benralizumab for the prevention of COPD Exacerbations. N Engl J Med 2019;381:1023-34.

51.

51. Brightling CE, Bleecker ER, Panettieri RA Jr, Bafadhel M, She D, Ward CK, et al. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Respir Med 2014;2:891-901.

52.

52. Doyle AD, Mukherjee M, LeSuer WE, Bittner TB, Pasha SM, Frere JJ, et al. Eosinophil-derived IL-13 promotes emphysema. Eur Respir J 2019;53:1801291.

53.

53. Calverley PM, Anderson JA, Celli B, Ferguson GT, Jenkins C, Jones PW, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med 2007;356:775-89.

54.

54. Parameswaran K, Anvari M, Efthimiadis A, Kamada D, Hargreave FE, Allen CJ. Lipid-laden macrophages in induced sputum are a marker of oropharyngeal reflux and possible gastric aspiration. Eur Respir J 2000;16:1119-22.

55.

55. Grebski E, Hess T, Hold G, Speich R, Russi E. Diagnostic value of hemosiderin-containing macrophages in bronchoalveolar lavage. Chest 1992;102:1794-9.

56.

56. Danel C, Israel-Biet D, Costabel U, Rossi GA, Wallaert B. The clinical role of BAL in pulmonary haemorrhages. Eur Respir J 1990;3:951-2, 961-9.

57.

57. Leigh R, Sharon RF, Efthimiadis A, Hargreave FE, Kitching AD. Diagnosis of left-ventricular dysfunction from induced sputum examination. Lancet 1999;354:833-4.

58.

58. Bellido-Casado J, Belda J, Bayes-Genis A, Margarit G, Lopez L, Casan P, et al. Hemosiderin-laden macrophages count in sputum in diagnosis of dyspnea of heart origin. Med Clin (Barc)2005;124:566-70.

59.

59. Kurashima K, Mukaida N, Fujimura M, Schroder JM, Matsuda T, Matsushima K. Increase of chemokine levels in sputum precedes exacerbation of acute asthma attacks. J Leukoc Biol 1996;59:313-6.

60.

60. Louis R, Shute J, Biagi S, Stanciu L, Marrelli F, Tenor H, et al. Cell infiltration, ICAM-1 expression, and eosinophil chemotactic activity in asthmatic sputum. Am J Respir Crit Care Med 1997;155:466-72.

61.

61. Mukherjee M, Thomas SR, Radford K, Dvorkin-Gheva A, Davydchenko S, Kjarsgaard M, et al. Sputum antineutrophil cytoplasmic antibodies in serum antineutrophil cytoplasmic antibody-negative eosinophilic granulomatosis with polyangiitis. Am J Respir Crit Care Med 2019;199:158-70.

62.

62. Mukherjee M, Bulir DC, Radford K, Kjarsgaard M, Huang CM, Jacobsen EA, et al. Sputum autoantibodies in patients with severe eosinophilic asthma. J Allergy Clin Immunol 2018;141:1269-79.

63.

63. Polosukhin VV, Richmond BW, Du RH, Cates JM, Wu P, Nian H, et al. Secretory IgA deficiency in individual small airways is associated with persistent inflammation and remodeling. Am J Respir Crit Care Med 2017;195:1010-21.

64.

64. Woodhead M, Blasi F, Ewig S, Garau J, Huchon G, Ieven M, et al. Guidelines for the management of adult lower respiratory tract infections: full version. Clin Microbiol Infect 2011;17Suppl 6:E1-59.

65.

65. Liu S, Zhou Y, Liu S, Chen X, Zou W, Zhao D, et al. Association between exposure to ambient particulate matter and chronic obstructive pulmonary disease: results from a cross-sectional study in China. Thorax 2017;72:788-95.

66.

66. Sethi S, Murphy TF. Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev 2001;14:336-63.

67.

67. Leitao Filho FS, Ra SW, Mattman A, Schellenberg RS, Criner GJ, Woodruff PG, et al. Serum IgG subclass levels and risk of exacerbations and hospitalizations in patients with COPD. Respir Res 2018;19:30.

68.

68. Ishii T, Kida K. Predictors of chronic obstructive pulmonary disease exacerbations. Curr Opin Pulm Med 2014;20:138-45.

69.

69. Ho T, Al-Selahi E, Mukherjee M, Huang C, Radford K, Kjarsgaard M, et al. Sputum and serum immunoglobulins in adult asthmatics with recurrent respiratory tract infections. Allergy 2020 Mar 18 [Epub]. https://doi.org/10.1111/all.14283.

70.

70. Huang YJ, Sethi S, Murphy T, Nariya S, Boushey HA, Lynch SV. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J Clin Microbiol 2014;52:2813-23.

71.

71. Wang Z, Bafadhel M, Haldar K, Spivak A, Mayhew D, Miller BE, et al. Lung microbiome dynamics in COPD exacerbations. Eur Respir J 2016;47:1082-92.

72.

72. Verrills NM, Irwin JA, He XY, Wood LG, Powell H, Simpson JL, et al. Identification of novel diagnostic biomarkers for asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2011;183:1633-43.

73.

73. Zhou H, Kobzik L. Effect of concentrated ambient particles on macrophage phagocytosis and killing of Streptococcus pneumoniae. Am J Respir Cell Mol Biol 2007;36:460-5.

74.

74. Winter WE, Bazydlo LA, Harris NS. The molecular biology of human iron metabolism. Lab Med 2014;45:92-102.

75.

75. Mohan S, Ho T, Kjarsgaard M, Radford K, Borhan AS, Thabane L, et al. Hemosiderin in sputum macrophages may predict infective exacerbations of chronic obstructive pulmonary disease: a retrospective observational study. BMC Pulm Med 2017;17:60.

76.

76. Gao P, Zhang J, He X, Hao Y, Wang K, Gibson PG. Sputum inflammatory cell-based classification of patients with acute exacerbation of chronic obstructive pulmonary disease. PLoS One 2013;8:e57678.

Tuberculosis & Respiratory Diseases