바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

교정력에 의한 치아이동과 Biomechanical adaptation

Biomechanical adaptation of orthodontic tooth movement

초록

교정력은 치아를 움직이기 위해 가하는 힘이다. 치아가 힘을 받으면, 세포외기질(extracellular matrix)이 변형되며, 치아주위조직에 새로운 신호가전달된다. 이와 같이 외부의 힘이 세포의 신호전달로이어지는 과정을 mechanotransduction이라고 한다. 이는 치아를 움직이는 기본 전략이다. 따라서 교정 력 으 로 치 아 를 이 동 (orthodontic tooth movement; OTM)시키는 과정에 신호의 발생, 전달, 세포골격계의 재구성(cytoskeletal reorganization),유전자 발현, 세포분화, 세포증식,특수한 물질의 합성 및 분비 그리고 세포사멸(apoptosis) 등 세포수준에서 변화가 뒤따른다.

keywords
orthodontic force, fluid flow, strain, cytokine, chemokine, growth factor, orthodontic tooth movement (OTM)

Abstract

Orthodontic tooth movement is a unique process which tooth, solid material is moving into hard tissue, bone. Orthodontic force in general provides the strain to the PDL and alveolar bone, which in turn generates the interstitial fluid flow(in detail, fluid flow in PDL and canaliculi). As a results of matrix strain, periodontal ligament cells and bone cells are deformed, releasing variety of cytokines, chemokines, and growth factors. These molecules lead to the orthodontic tooth movement(OTM). In these inflammation and tissue remodeling sites, all of the cells could closely communicate with one another, flowing the information for tissue remodeling. To accelerate the rate of OTM in future, local injection of single growth factor(GF) or a combination of multiple GF's in the periodontal tissues might intervene to stimulate the rate of OTM. Corticotomy is effective and safe to accelerate OTM.

keywords
orthodontic force, fluid flow, strain, cytokine, chemokine, growth factor, orthodontic tooth movement (OTM)

참고문헌

1.

1. Bassett CA. and Becker RO. Generation of Electric Potentials by Bone in Response to Mechanical Stress. Science 1962; 28: 1063-1064,

2.

2. Henneman et al., Mechanobiology of tooth movement. Eur J Ortho 2008; 30(3), 299-306

3.

3. Ildeu Andrade Jr. Silvana RA Taddei and Paulo EA Souza. Inflammation and Tooth Movement: The Role of Cytokines, Chemokines, and Growth Factors. Seminars in Orthodontics 2012; 18(4): 257-269

4.

4. Krishman V. and Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2006; 129: 469e1-469e32, .

5.

5. Krishman V. and Davidovitch Z. On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res 2009; 88(7): 597-608

6.

6. Long H. Pyakurei U. Wang Y. Liao L. Zhou Y. and Lai W. Interventionas for accelerating orthodontic tooth movement. A systematic review. Angle Orthod. 2013; 83: 164-171

7.

7. Masella SC. Meister M. Current concepts in the biology orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2006; 129: 458-468

8.

8. Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement. : 100 years after Carl Sandstedt. Eur J Orthod 2006; 28: 221-240

9.

9. Peter ten D. Carola Krause, David JJ., de Gorter, Clemens WGM. Loewik, and Rutger L. van Bezooijen. Osteocyte-Derived Sclerostin Inhibits Bone Formation; Its Role in Bone Morphogenetic Protein and Wnt Signaling. J Bone Joint Surg Am 2008; 90: 31-35, .

10.

10. Yamaguchi M. Nakajima R. and Kasai K. Mechanoreceptors, Nociceptors, and Orthodontic Tooth Movement. Seminars in Orthodontics 2012; 18(4): 249-256

11.

11. 전국치과대학(원) 교수협의회. 치의학을 위한 생리학 제2판 대한나래출판사 2009. 423-439

logo