Oil was extracted from cashew nuts. The physicochemical parameters of the oil were determined. A chromatographic assay of the oil was carried out using Gas Chromatography-Mass Spectrometry. Seventeen compounds were detected: Phenol, Phenol 2-methyl-, Cyclohexene 4, 4-dimethyl-, m-Fluoro-2-diazoacetophenone 4-dimethyl-, Tetradecanoic acid, Phenol 4-octyl-, n-Hexadecanoic acid. Others are 9, 12-Octadecadienoic acid (Z, Z) - methyl ester, Hexadecanoic acid methyl ester, Methyl stearate, Dodecanoic acid methyl ester, 9, 12, 15-Octadecatrienoic acid methyl ester, 9, 12, 15-Octadecatrienoic acid (Z, Z, Z)-, Oleic acid, Octadecanoic acid, Tetracosanoic acid and 9-Octadecenoic acid methyl ester. Among the components are omega three and omega six essential free fatty acids. The rheological profiling and flow properties of cashew nut oil were determined using a Programmable Rheometer. Cashew nut oil exhibits slight dilatant behaviour at the low end of shear rate. The long chain and high molecular weight of its constituents controlled its rheology. Long-chained 9-Octadecenoic acid methyl ester, 9, 12-Octadecadienoic acid (Z, Z) - methyl ester, Tetracosanoic acid and methyl stearate, coupled with their high molecular weights are responsible for the shear thickening effect observed. Two models, Carreau-Yasuda and Ostwald-de Waele Power Law were employed to fit the rheological data. The Carreau-Yasuda model followed well the data.