Article Detail

Home > Article Detail
  • P-ISSN 1010-0695
  • E-ISSN 2288-3339

The Effects of Lycii Radicis Cortex on Inflammatory Response through an Oxidative Stress and AGEs-mediated Pathway in STZ-induced Diabetic Rats

Journal of Korean Medicine / Journal of Korean Medicine, (P)1010-0695; (E)2288-3339
2016, v.37 no.2, pp.62-75


  • Downloaded
  • Viewed

Abstract

Objectives: This study examined whether Lycii Radicis Cortex has an inhibitory effect on inflammatory response through an oxidative stress and advanced glycation endproducts (AGEs)-mediated pathway in streptozotocin (STZ)-induced type 1 diabetic rats. Methods: Lycii Radicis Cortex was orally administered to STZ-induced diabetic rats in doses of 80 or 160 mg/kg body weight/day for 2 weeks, and its effects were compared with those of diabetic control and normal rats. Results: The administration of Lycii Radicis Cortex decreased the elevated serum urea nitrogen and renal reactive oxygen species (ROS), and reduced the increased AGEs in the serum and kidney. The elevated protein expressions of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits in the kidney of diabetic control rats were significantly decreased after Lycii Radicis Cortex treatments. Moreover, the kidney of diabetic rats exhibited the up-regulation of receptor for AGEs (RAGE) and AGEs-related proteins; however, Lycii Radicis Cortex treatment also significantly reduced those expressions (excepted RAGE). In addition, the diabetic rats exhibited an up-regulation of the expression of proteins related to inflammation in the kidney, but Lycii Radicis Cortex administration reduced significantly the expression of the inflammatory proteins through the nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1) pathways. Conclusions: This study provides scientific evidence that Lycii Radicis Cortex exerts the antidiabetic effect by inhibiting the expressions of AGEs and NF-κB in the STZ-induced diabetic rats.

keywords
Lycii Radicis Cortex, Type 1 Diabetes, Oxidative Stress, Nuclear Factor-kappa B, Advanced Glycation Endproduct.


Reference

1

1. Peppa M, Vlassara H. Advanced glycation endproducts and diabetic complications: A general overview. Hormones. 2005;4:28-37.

2

2. Kikkawa R, Koya D, Haneda M. Progression of diabetic nephropathy. Am. J. Kidney Dis. 2013;41:S19-21.

3

3. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008;57:1446-54.

4

4. Ruderman N, Wiliamson J, Brownlee M. Glucose and diabetic vascular disease. FASEB J. 1992;6:2905-14.

5

5. Schmidt AM, Yan SD, Stern DM. The dark side of glucose. Nature. 1995;Med1:1002-4.

6

6. Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, et al. Cloning and expression of a cell surface receptor for advanced glycosylation endproducts of proteins. J. Biol Chem. 1992;267:14998-15004.

7

7. Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, et al. Isolation and characterization of two binding proteins for advanced glycosylation endproducts from bovine lung which are present on the endothelial cell surface. J. Biol Chem. 1992;267:14987-97.

8

8. Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am. J. Physiol Endocrinol Metab. 2001;280: 685-94.

9

9. Simm A, MuÈnch G, Seif F, Schenk O, Heidland A, Richter H, et al. Advanced glycation endproducts stimulate the MAP-kinase pathway in tubulus cell line LLC-PK1. FEBS Lett. 1997;410:481-4.

10

10. Wang FY, Luo JY. Dictionary of Traditional Chinese Materia Medica. Hunan:Hunan Science and Technology Press. 2006:167.

11

11. Funayama S, Yoshida K, Konno C, Hikino H. Structure of kukoamine A, a hypotensive principle of Lycium chinense root barks 1. Tetrahedron Lett. 1980;21:1355-6.

12

12. Chan JY, Leung PC, Che CT, Fung KP. Protective effects of an herbal formulation of Radix Astragali, Radix Condonopsis and Cortex Lycii on streptoaotocin-induced apaptosis in pancreatic beta-cells: an implication for its treatment of diabetes mellitus. Phytother. Rec. 2008;22:190-6.

13

13. Cho SH, Park EJ, Kim EO, Choi SW. Study on the hypochlesterolemic and actioxidative effects of tyramine derivatives from the root bark of Lycii Radicis Cortex. Nut. Rec. Pract. 2011;5:412-20.

14

14. Ye Z, Haung Q, Ni HX, Wang D. Cortex Lycii Radicis extracts improve insulin resistance and lipid metabolism in obese-diabetic rats. Phytother Res. 2008;22:1665-70.

15

15. Jung YS, Park CH, Shin HC. Antioxidative effects of Lycium chinense Miller on cisplatin -induced nephrotoxicity in rats. Korean J. Orent. Int. Med. 2014;35:92-105.

16

16. Hou DX, Yanagita T, Uto T, Masuzaki S, Fujii M. Anthocyanidins inhibt cyclooxygenase-2expression in LPS-evoked macrophages:structure-activity relationship and molecular mechanisms involved. Biochem. Pharmacol. 2005;70:417-25.

17

17. Jayaprakasam B, Vareed SK, Olson LK, Nair MG. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J. Agric. Food Chem. 2005;53:28-31.

18

18. Yamakoshi J, Kataoka S, Koga T, Ariga T. Proanthocyanidin-rich extract of grape seeds attenuated the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis. 1999;142:139-49.

19

19. Ye X, Krohn RL, Liu W, Joshi SS, Kuszynski CA, McGinn TR, et al. The cytotoxic effects of n novel IH636 grape seed proanthocyanidin extract on cultured human cancer cells. Mol. Cell. Biochem. 1999;196:99-108.

20

20. Ali SF, LeBel CP, Bondy SC. Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology. 1992;13:637-48.

21

21. McFarland KF, Catalano EW, Day JF, Thorpe SR, Baynes JW. Nonenzymatic glucosylation of serum proteins in diabetes mellitus. Diabetes. 1979;28:1011-4.

22

22. Momose T, Yano Y, Ohashi K. Organic analysis. XLIV. A new deproteinizing agent for determination of blood sugar. Chem. Pham. Bull. 1963;11:968-72.

23

23. Nakayama H, Mitsuhashi T, Kuwajima S, Aoki S, Kuroda Y, Itoh Tet al. Chemical detection of advanced glycation endproducts in lens crystallins from streptozocin-induced diabetic rat. Diabetes. 1993;42:345-50.

24

24. Komatsu S. Extraction of nuclear proteins. Methods Mol. Biol. 2007;355:73-7.

25

25. Yokozawa T, Yamabe N, Kim HY, Kang KS, Hur JM, Park CH, et al. Protective effects of morroniside isolated from Corni Fructus against renal damage in streptozotocin-induced diabetic rats. Biol Pharm Bull. 2008;31:1422-8.

26

26. Kim CM, Shin MG, Lee KS, Ahn DG. The encyclopedia of oriental herbal medicine. Seoul:Jungdam publishing group. 2004:3929-34.

27

27. Al-Malki AL, Sayed AA, El Rabey HA. Proanthocyanidin attenuateion of oxidative stress and NF-κB protects apolipoprotein E-deficient mice against diabetic nephropathy. Evidenc-Based Complementary and Alternative Medicine. 2013;2013:1-8.

28

28. Rösen P, Nawroth PP, King G, Möller W, Tritschler HJ, Packer L. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev. 2001;17:189-212.

29

29. Newsolme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D et al. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J. Physiol. 2007;583:9-24.

30

30. Kashihara N, Haruna Y, Kondeti VK, Kanwar YS. Oxidative stress in diabetic nephropathy. Curr Med Chem. 2010;17:4256-69.

31

31. Tooke JE. Possible pathophysiological mechanisms for diabetic angiopathy in type 2 diabetes. J. Diabetes Complications. 2000;14:197-200.

32

32. Singh VP, Bali A, Singh N, Jaqqi AS. Advanced glycation endproducts and diabetic complications. Korean J Physiol Pharmacol. 2014;18:1-14.

33

33. Schinzel R, Münch G, Heidland A, Sebecova K. Advanced glycation endproducts in end-stage renal disease and their removal. Nephron. 2001;87:295-303.

34

34. Horie K, Miyata T, Maeda K, Miyata S, Suqiyama S, Sakai H, et al. Immunohistochemical colocalization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implications for glycoxidative stress in the pathogenesis of diabetic nephropathy. J. Clin Invest. 1997;100:2995-3004.

35

35. Ceriello A, Bortolotti N, Pirisi M, Crescentini A, Tonutti L, Motz E, et al. Total plasma antioxidant capacity predicts thrombosis-prone status in NDDM patients. Diabetes Care. 1997;20:1589-93.

36

36. Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J, et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappa B. Diabetes. 2001;50:2792-808.

37

37. Nagi R, Ikeda K, Higashi T, Sano H, Jinnouchi Y, Araki T, et al. Hydroxyl radical mediates N epsilon-(carboxymethyl)lysine formation from Amadori product. Biochem Biophys Res Commun. 1997;234:167-72.

38

38. Nagi R, Unno Y, Hayashi MC, Masuda S, Hayase F, Kinae N, et al. Peroxynitrite induces formation of N(epsilon)-(carboxymethyl) lysine by the caleavage of Amadori product and generation of glucosone and glyoxal from glucose: novel pathways for protein modification by peroxynitrite. Diabetes. 2002;51:2833-89.

39

39. Wells-Knecht KJ, Zyzak DV, Litchfield JE, Thorpe SR, Baynes JW. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry. 1995;34:3702-9.

40

40. Koito W, Araki T, Horiuchi S, Nagai R. Conventional antibody against epsilon-(carboxymethyl)lysine (CML) shows cross-reaction to Nepsilon -(carboxyethyl)lysine (CEL): immnochemical quantification of CML with a specific antibody. J. Biochem. 2004;136:831-837.

41

41. Ahmed MU, Frye EB, Degenhardt TP, Thorpe SR, Baynes JW. Ne-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increase with age in human lens proteins. Biochem. J. 1997;324:565-70.

42

42. Lim AK, Tesch GH. Inflammation in diabetic nephropathy. Mediators Inflamm. 2012;2012:1-12.

43

43. Lee JI, Burckart GJ. Nuclear factor kappa B:important transcription factor and therapeutic target. J. Clin. Pharmacol. 1998;38:981-93.

44

44. Baldwin AS Jr. NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649-83.

45

45. Sanchez AP, Sharma K. Transcription factors in the pathogenesis of diabetic nephropathy. Expert Rev Mol Med. 2009;11:e13.

46

46. Hess J, Anqel P, Schorpp-Kistner M. AP-1subunits: quarrel and harmony among siblings. J Cell Sci. 2004;117:5965-73.

  • Downloaded
  • Viewed
  • 0KCI Citations
  • 0WOS Citations

Other articles from this issue

Recommanded Articles

상단으로 이동

Journal of Korean Medicine