바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Are scientific capacities and industrial funding critical for universities' knowledgetransfer activities? - A case study of South Korea

Are scientific capacities and industrial funding critical for universities' knowledgetransfer activities? - A case study of South Korea

Journal of Contemporary Eastern Asia / Journal of Contemporary Eastern Asia, (E)2383-9449
2011, v.10 no.1, pp.15-23
https://doi.org/10.17477/JCEA.2011.10.1.015
(Korean Educational Development Institute KEDI)
  • 다운로드 수
  • 조회수

Abstract

This study focuses on the knowledge-transfer activities of Korean universities at the organisational level. Considering the idiosyncratic characteristics of the Korean university system, as well as those of universities in other recently developed Asian countries experienced a rapid economic catch-up, this study is more interested in the relationship between the scientific capacity of universities and their knowledge-transfer activities, and between universities' funding sources and their knowledge-transfer activities. According to the results of the study, scientific capacity in a specific discipline, such as engineering, is important for universities in both other developed countries and in Korea, while scientific capacity (regardless of the discipline) is apparently not important for Korean universities, particularly in the area of domestic publication. Furthermore, this result supports the proposition suggested that strategically chosen industrial sectors in rapid catch-up countries are closely related to the scientific capacity of universities in specific disciplines. In terms of funding sources, the amount of funding from industry is strongly related to the knowledge-transfer activities of universities, whereas the proportion of funding from industry relative to the total amount of funding is not as significantly related to knowledge-transfer activities. The failure to identify a significant relationship between central government funding and knowledge-transfer activities may be due to less strict requirements for commercialisation in central government R&D programmes. Otherwise, central government funding fails to generate meaningful knowledge-transfer activities in universities.

keywords

참고문헌

1.

Adams, J. and Griliches, Z.. Measuring science: an exploration.

2.

Adams, J. and Griliches, Z.. Research Productivity in a System of Universities. Annales d'Economie et de Statistique, No. 49/50, Economie et Econometrie de l'innovation / The Economics and Econometrics of Innovation (Jan. - Jun., 1998).

3.

Albuquerque, E. M. Scientific Infrastructure and Catching-Up Process: Notes about a Relationship Illustrated by Science and Technology Statistics.

4.

Altbach, P. G., Altbach et al. (eds). Higher Education and Scientific Development: The Promise of Newly Industrializing Countries;Scientific Development and Higher Education.

5.

Ambos, T. C., Makela, K., Birkingshaw, J. and D'Este, P.. When does university research get commercialised? Institutional and individual level predictors of commercial outputs from research-council funded projects.

6.

Arundel, A. and Geuna, A.. Proximity and the use of public science by innovative European firms.

7.

Arundel, A., Van De Paal, G. and Soete, L.. Innovation strategies of Europe's largest industrial firms. PACE report.

8.

Bak, Hee-Je. The Characteristics of Korean Universities' Research in terms of Structural Change: Analysis on the R&D Expenditure after the 1980s.

9.

Brooks, H. and Randazzese, L.P., Branscomb, L.M. and Keller, J.H. (eds). University-industry relations: the next four years and beyond;Investing in Innovation: Creating an Innovation Policy that works.

10.

Carayol, N.. Academic incentives, research organization and patenting at a large French university.

11.

Carlsson, B. and Fridh, A. C.. Technology Transfer in the United States.

12.

Chapple, W., Lockett, A., Siegel, D. and Wright, M. Assessing the relative performance of U.K. university technology transfer offices: parametric and nonparametric evidence.

13.

Cohen, W. M., Nelson, R. R. and Walsh, J. P.. Links and impacts: The influence of public research on industrial R&D.

14.

Coupe, T.. Science is golden: academic R&D and university patents.

15.

De Campos, A.. University-industry links in late-industrializing countries: a study of Unilever Brazil.

16.

De Campos, A. A review of the literature on university-industry links: towards an integrated approach in the study of influencing factors.

17.

Di Gregorio, D. and Shane, S.. Why do some universities generate more startups than others?.

18.

Florida, R. and Cohen, W.M., Branscomb, L.M., Kodama, F., Florida, R. (eds). Engine or infrastructure? The university role in economic development;Industrializing Knowledge: University-Industry Linkages in Japan and the United States.

19.

Foltz, J., Barham, B. and Kim, K. Universities and agricultural biotechnology patent production.

20.

Foltz, J., Kim, K. and Barham, B. A Dynamic Count Data Analysis of University AgBiotech Patents. Food Marketing Policy Center Research Report, 56.

21.

Freeman, C. and Soete, L.. The economics of industrial innovation.

22.

Geuna, A. Allocation of Funds and Research Output: The Case of UK Universities.

23.

Griliches, Z.. Patent statistics as economic indicators: a survey.

24.

Han, K. H.. Opportunities and Constraints of Patternization of Universities in Science and Engineering.

25.

Hegde, D.. Public and Private Universities: Unequal Sources of Regional Innovation?.

26.

Henderson, R., Jaffe A. B. and Manuel Trajtenberg. Universities as a source of commercial technology: a detailed analysis of university patenting, 1965-1988.

27.

Hwang, H. and Yoon, J.. The Accumulation Process of Basic Research Capability in Korea: Case Study on ERC/SRC.

28.

Hershberg, E., Nabeshima, K. and Yusuf, S.. Opening the Ivory Tower to Business: University-Industry Linkages and the Development of Knowledge-Intensive Clusters in Asian Cities.

29.

Intarakumnerd, P. et al.. National innovation system in less successful developing countries: the case of Thailand.

30.

Kim, Cheol Hoi and Lee, Sang Don. A study on Relationships between Performance of University-Industry Cooperations and Competency Factors of University.

31.

Kwon, K.-S.. Research and Knowledge-transfer Activities of Different Types of Korean Universities.

32.

Kwon, K.-S.. The relationship between academic research and knowledge transfer activities of universities: in case of Korea.

33.

Lach, S. and Schankerman M. Incentives and invention in universities, Discussion paper 3916.

34.

Ljungberg, D., Johansson, M. and McKelvey, M.. Does structure matter for science? The Matthew effect in the Swedish university sector.

35.

Mansfield, E.. Academic research and industrial innovation: An update of empirical findings.

36.

Mansfield, E.. Academic research and industrial innovation.

37.

Mazzoleni, R. and Nelson, R. R.. Public research institutions and economic catch-up.

38.

Nelson, R.R.. Institutions supporting technical advance in industry. American Economic Review.

39.

O'Shea, R.P., Allen, T.J., Chevalier, A. and Roche, F. Entrepreneurial orientation, technology transfer and spinoff performance of U. S. universities.

40.

Owen-Smith, J.. From separate systems to a hybrid order: accumulative advantage across public and private science at research one universities.

41.

Park, K., Kwon, K.-S., Eun, J., Han, D., Han, Y. and Han, S.. Analysis on the impact of university-industry collaboration policy on research activities and patenting activities in Korean universities.

42.

Payne, A. A. and Siow, A. Does Federal Research Funding Increase University Research Output?.

43.

Ponomariov, B. L.. Effect of university characteristics on scientists' interaction with the private sector: an exploratory assessment.

44.

Powers, J. B.. Commercializing Academic Research: Resource Effects on Performance of University Technology Transfer.

45.

Powers, J. B.. R&D Funding Sources and University Technology Transfer: What is Stimulating Universities to Be More Entrepreneurial.

46.

Powers, J. B. and McDougall, P. University start-up formation and technology licensing with firms that go public: A resources based view of academic entrepreneurship.

47.

Rosenberg, N. and Nelson, R.. American universities and technical advance in industry.

48.

Sapsalis, E., Van Looy, B., Van Pottelsberghe De La Potterie, B., Callaert, J., and Debackere, K. Antecedents of patenting activity of European universities. Working Papers CEB 05-005.RS.

49.

Siegel, Donald, David Waldman and Albert Link. Assessing the Impact of Organizational Practices on the Relative Productivity of University Technology Transfer Offices: An Exploratory Study.

50.

Sine, W., Shane, S. and Di Gregorio, D.. The halo effect and university technology licensing.

51.

Sohn, B., Lee, B. and Jang, J.. Current situation and prospect of Korean university-industry cooperation.

52.

Sohn, D.-W. and Kenney, M. Universities, Clusters, and Innovation Systems: The Case of Seoul, Korea.

53.

Song, Sung-Soo. A study on the Characteristics of Science and Technology Policy in Korea.

54.

Thursby, Jerry and S. Kemp. Growth and Productive Efficiency of University Intellectual Property Licensing.

55.

Varga, A.. University Research and Regional Innovation.

56.

Von Tunzelmann, G. N.. Technology and industrial progress: the foundations of economic growth.

57.

Wong, P.-K., Ho, Y.-P. and Singh, A.. Towards an "Entrepreneurial University" Model to Support Knowledge-Based Economic Development: The Case of the National University of Singapore.

58.

Eun, J-.H., Lee, K and Wu, G. Explaining the "University-run enterprise" in China: A theoretical framework for university-industry relationship in developing countries and its application to China.

59.

MEST. National Project towards Building: World Class Universities 2008-2012.

60.

Lee, J.S.. Korea's science & technology policy.

61.

Seung, J. and Kim, W.. Post Catch-Up Innovation and Development of Creative Talent in Korea: Limitations and Challenges.

62.

Horta, H.. The Role of the State in the Internationalization of Universities in Catching-up Countries: An Analysis of the Portuguese Higher Education System.

63.

Song, W. and Hwang, H-.R.. The Technological Innovation Patterns of Component Suppliers in the Post Catching-up Period: The Case Study of Component Suppliers in Mobile Phone Industry.

Journal of Contemporary Eastern Asia