ISSN : 2234-7550
In an attempt to regain function and aesthetics in the craniofacial region, different biomaterials, including titanium, hydroxyapatite, biodegradable polymers and composites, have been widely used as a result of the loss of craniofacial bone. Although these materials presented favorable success rates, osseointegration and antibacterial properties are often hard to achieve. Although bone-implant interactions are highly dependent on the implant’s surface characteristics, infections following traumatic craniofacial injuries are common. As such, poor osseointegration and infections are two of the many causes of implant failure. Further, as increasingly complex dental repairs are attempted, the likelihood of infection in these implants has also been on the rise. For these reasons, the treatment of craniofacial bone defects and dental repairs for long-term success remains a challenge. Various approaches to reduce the rate of infection and improve osseointegration have been investigated. Furthermore, recent and planned tissue engineering developments are aimed at improving the implants’ physical and biological properties by improving their surfaces in order to develop craniofacial bone substitutes that will restore, maintain and improve tissue function. In this review, the commonly used biomaterials for craniofacial bone restoration and dental repair, as well as surface modification techniques, antibacterial surfaces and coatings are discussed.
Bone tissue engineering is one of the important therapeutic approaches to the regeneration of bones in the entire field of regeneration medicine. Mesenchymal stem cells (MSCs) are actively discussed as material for bone tissue engineering due to their ability to differentiate into autologous bone. MSCs are able to differentiate into different lineages: osteo/odontogenic, adipogenic, and neurogenic. The tissue of origin for MSCs defines them as bone marrow-derived stem cells, adipose tissue-derived stem cells, and, among many others, dental stem cells. According to the tissue of origin, DSCs are further stratified into dental pulp stem cells, periodontal ligament stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, and dental papilla cells. There are numerous in vitro/in vivo reports suggesting successful mineralization potential or osteo/odontogenic ability of MSCs. Still, there is further need for the optimization of MSCs-based tissue engineering methods, and the introduction of genes related to osteo/odontogenic differentiation into MSCs might aid in the process. In this review, articles that reported enhanced osteo/odontogenic differentiation with gene introduction into MSCs will be discussed to provide a background for successful bone tissue engineering using MSCs with artificially introduced genes.
Objectives: The purpose of this study was to investigate the wound healing effect of primary cultured oral mucosal keratinocytes (OMKs) and to assess their roles in skin wounds. Materials and Methods: OMK labeled with BromodeoxyUridine were scattered onto 1.5×1.5 cm skin defects of adult female nude mice (OMK group, n=15). For the control, culture media were placed on the wound (control group, n=15). Mice in both groups were sacrificed at three days (n=5), one week (n=5), and two weeks (n=5), and histomorphometric and immunoblot analyses with keratinocyte growth factor (KGF), interleukin (IL)-6, and IL-1α antibody were performed for the biopsied wound specimen. To verify the effect of the cytokine, rhIL-1α was applied instead of OMK transplantation, and the OMK and control groups were compared with regard to re-epithelialization. Results: Histomorphometric analyses demonstrated faster re-epithelialization in the graft group than in the control group at the third day, first week, and second week. Newly forming epithelium showed maintenance of the histological character of the skin epithelium. The graft group showed superior expression of KGF, IL-6, and IL-1α protein, compared with the control group. Similar faster re-epithelialization was observed after treatment with rhIL-1α instead of OMK transplantation. Conclusion: We successfully confirmed that the graft of primary cultured OMKs promoted regeneration of skin defects. The mechanism of accelerated wound healing by primary cultured OMKs was attributed to inducement of cytokine expression as required for re-epithelialization.
Objectives: In three-dimensional computed tomography (3D-CT), the cant is evaluated by measuring the distance between the reference plane (or line) and the tooth. The purpose of this study was to determine the horizontal skeletal reference plane that showed the greatest correlation with clinical evaluation. Materials and Methods: The subjects were 15 patients who closed their eyes during the CT image taking process. The menton points of all patients deviated by more than 3 mm. In the first evaluation, clinical cant was measured. The distance from the inner canthus to the ipsilateral canine tip and the distance from the eyelid to the ipsilateral first molar were obtained. The distance between the left and right sides was also measured. In the second evaluation, skeletal cant was measured. Six reference planes and one line were used for the evaluation of occlusal cant: 1) FH plane R: Or.R – Or.L – Po.R; 2) FH plane L: Or.R – Or.L – Po.L; 3) F. Ovale plane R: Rt.F.Ovale – Lt.F.Ovale – Or.R; 4) F. Ovale plane L: Rt.F.Ovale – Lt.F.Ovale – Or.L; 5) FZS plane R: Rt.FZS – Lt.FZS – Po.R; 6) FZS plane R: Rt.FZS – Lt.FZS – Po.L, and; 7) FZS line: Rt.FZS – Lt.FZS. Results: The clinical and skeletal cants were compared using linear regression analysis. The FH plane R, FH plane L, and FZS line showed the highest correlation (P<0.05). Conclusion: The FH plane R and FH plane L are the most appropriate horizontal reference plane in evaluation of occlusal cant on 3D-CT.
Objectives: This study evaluated implant success rate, survival rate, marginal bone resorption of implants, and material resorption of sinus bone graft in cases wherein tapered body implants were installed. Materials and Methods: From September 2003 to January 2006, 20 patients from Seoul National University Bundong Hospital, with a mean age of 54.7 years, were considered. The mean follow-up period was 19 months. This study covered 50 implants; 14 implants were placed in the maxillary premolar area, and 36 in the maxillary molar area; 24 sinuses were included. Results: The success rate was 92%, and the survival rate was 96.0%. The mean amount of sinus augmentation was 12.35±3.27 mm. The bone graft resorption rate one year after surgery was 0.97±0.84 mm; that for the immediate implantation group was 0.91±0.86 mm, and that for the delayed implantation group was 1.16±0.77 mm. However, the difference was not statistically significant. The mean marginal bone resorption one year after restoration was 0.17±0.27 mm (immediate group: 0.12±0.23 mm; delayed group 0.40±0.33 mm); statistically significant difference was observed between the two groups. Conclusion: Tapered body implant can be available in the maxillary posterior edentulous ridge which sinus bone graft is necessary.
Lemierre syndrome is caused by an infection in the oropharyngeal region with subsequent thrombophlebitis in the internal jugular vein. The thrombus from the thrombophlebitis can invade other vital organs, such as liver, lungs, or joints, resulting in secondary infection, which further exacerbates the fatal prognosis of this syndrome. Lemierre syndrome, also called postanginal sepsis or necrobacillosis, was first reported by Dr. Lemierre in 1936. In his report, Lemierre mentioned that out of 20 patients who suffered from this syndrome, only two survived. He also stated that all of the 20 patients complained of infections in the palatine tonsils and developed sepsis and thrombophlebitis in the internal jugular vein. Once called a “forgotten disease,” this syndrome showed a very high mortality rate until usage of antibiotics became prevalent. In this case report, the authors present a 71-year-old female patient who suffered from Lemierre syndrome with thrombosis extended to the right sigmoid sinus.
Mandibular fractures in infants are rare. This case report describes management of a mandibular fracture in an 11-month-old infant using a microplate and screws with open reduction. The surgical treatment was successful. Because the bone fragments were displaced and only the primary incisors had erupted, conservative treatment, such as an acrylic splint and circummandibular wiring, was not recommended. Nine weeks after surgery, the microplate was removed. The results showed complete clinical and radiological bone healing with normal eruption of deciduous teeth.
Focal osteoporotic bone marrow defect (FOBMD) is a radiolucent area corresponding to the presence of hematopoietic tissue rarely found in the jaws. FOBMD is most commonly located in the mandibular edentulous posterior area of a middle-aged female. From November 2011 to November 2012, we experienced three cases involving removal of implants that had accidentally fallen into the FOBMD area. All patients happened to be female, with a mean age of 54 years (range: 51-60 years). One case involved hypoesthesia of the lower lip and chin, while two cases healed without any complication. Displacement of an implant into the FOBMD area is an unusual event, which occurs rarely during placement of a dental fixture. The purpose of this study was to report on three cases of FOBMD and to provide a review of related literature.