바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

Comparative inorganic analysis of the mesiodens and the 3rd molar as the autogenous tooth graft materials

Abstract

prior to clinical study. Material and methods: The extracted mesiodens and the 3rd molar teeth were prepared. The teeth are prepared as in the process of the autogenous tooth bone graft. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis was performed for inorganic analysis. Results: Rough and porous surfaces were observed in all materials in SEM analysis. Ca/P ratio of mesiodens was 1.55 and the 3rd molar was 1.22 in EDS analysis. XRD analysis shows that the 3 main peaks position were similar. This means that the graft materials are very similar to that of the crystallinity. Conclusions: The mesiodens and the 3rd molar teeth are very similar to the inorganic component. These results provide the reasonable rationale that mesiodens can be used as autogenous tooth bone graft in a clinic.

keywords
Bone graft, Dental implant, Teeth

참고문헌

1.

1. Kim YK, Kim SG, Byeon JH, et al. Development of a novel bone grafting material using autogenous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010 ; 109:496-503.

2.

2. Kim YK. The development of new biomaterial for restoration of hard tissue defects. J Korean Dent Assoc. 1998 ; 36:289-295.

3.

3. Kim YK, Lee HJ, Kim KW, Kim SG, Um IW. Guide bone regeneration using autogenous teeth: case reports. J Kor Assoc Oral Maxillofac Surg. 2011 ; 37:142-147.

4.

4. Black G. Supernumerary teeth. Dent Summ. 1909 ; 29:83-110.

5.

5. Mukhopadhyay S. Mesiodens: a clinical and radiographic study in children. J Indian Soc Pedod Prev Dent. 2011 ; 29:34-38.

6.

6. Luten Jr JR. The prevalence of supernumerary teeth in primary and mixed dentitions. J Dent Child (Chic). 1967 ; 34:346-353.

7.

7. Russell KA, Folwarczna MA. Mesiodens-diagnosis and management of a common supernumerary tooth. J Can Dent Assoc. 2003 ; 69:362-367.

8.

8. Tazaki J, Murata M, Yuasa T, et al. Autograft of human tooth and demineralized dentin matrices for bone augmentation. J Ceram Soc JPN. 2010 ; 118:442-445.

9.

9. Fuller BT, Richards MP, Mays S. Stable carbon and nitrogen isotope variations in tooth dentine serial sections from Wharram Percy. J Archaeol Sci. 2003 ; 30:1673-1684.

10.

10. Mulliken JB, Glowacki J, Kaban LB, Folkman J, Murray JE. Use of demineralized allogeneic bone implants for the correction of maxillocraniofacial deformities. Ann Surg. 1981 ; 194:366-372.

11.

11. Goldberg VM, Stevenson S. Natural history of autografts and allografts. Clin Orthop Relat Res. 1987:7-16.

12.

12. Urist M. Bone morphogenetic protein induced bone formation in experimental animals and patients with large bone defects. Cell and Molecular Biology of Vertebrate Hard Tissues, Symposium (ed 18), 136CIBA Foundation, London, England ; 1988. p.281.

13.

13. Carmagnola D, Adriaens P, Berglundh T. Healing of human extraction sockets filled with Bio-Oss. Clin Oral Implants Res. 2003 ; 14:137-143.

14.

14. Wenz B, Oesch B, Horst M. Analysis of the risk of transmitting bovine spongiform encephalopathy through bone grafts derived from bovine bone. Biomaterials. 2001 ; 22:1599-1606.

15.

15. Yeo SI, Park SH, Noh WC, Park JW, Lee JM, Suh JY. A comparative analysis of basic characteristics of several deproteinized bovine bone substitutes. J Korean Acad Periodontol. 2009 ; 39:149-156.

16.

16. Lewandrowski KU, Gresser JD, Wise DL, Trantol DJ. Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of poly(propylene glycol-co-fumaric acid)-based cement implants in rats. Biomaterials. 2000 ; 21:757-764.

17.

17. Laurencin CT. Bone graft substitutes: ASTM International ; 2003.

18.

18. Sun JS, Lin FH, Hung TY, suang YH, Chang WH, Liu HC. The influence of hydroxyapatite particles on osteoclast cell activities. J Biomed Mater Res. 1999 ; 45:311-321.

19.

19. Kim YK. An experimental study on the tissue reaction of toothash implanted in mandible body of the mature dog. J Korean Assoc Maxillofac Plast Reconstr Surg. 1993 ; 15:129-136.

20.

20. Kim Y, Lee H, Kim S, Um I, Lim S, Kim S. Analysis of inorganic component and SEM analysis of autogenous teeth bone graft material and histomorphometric analysis after graft. J Korean Acad Implant Dent. 2009 ; 28:1-9.

21.

21. Gongloff RK. Vital root retention. Int J Oral Maxillofac Surg. 1974 ; 3:97-99.

22.

22. Fareed K, Khayat R, Salins P. Vital root retention:a clinical procedure. J Prosthet Dent. 1989 ; 62:430-434.

23.

23. Freedman GL. Intentional partial odontectomy:report of case. J Oral Maxillofac Surg. 1992 ; 50:419-421.

24.

24. Kim YK. Development of autogenous teeth bone graft material and clinical evaluation. J Korean Dent Assoc. 2011 ; 49:159-169.

25.

25. Jensen SS, Bornstein MM, Dard M, Bosshardt DD, Buser D. Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J Biomed Mater Res B Appl Biomater. 2009 ; 90:171-181.

26.

26. Orhan AI, özer L, Orhan K. Familial occurrence of nonsyndromal multiple supernumerary teeth: a rare condition. Angle Orthod. 2006 ; 76:891-897.

27.

27. Ray D, Bhattacharya B, Sarkar S, Das G. Erupted maxillary conical mesiodens in deciduous dentition in a Bengali girl--a case report. J Indian Soc Pedod Prev Dent. 2005 ; 23:153-155.

28.

28. Rajab LD, Hamdan MA. Supernumerary teeth:review of the literature and a survey of 152 cases. Int J Paediatr Dent. 2002 ; 12:244-254.

29.

29. Gallas MM, Garcia A. Retention of permanent incisors by mesiodens: a family affair. Br Dent J. 2000 ; 188:63-64.

30.

30. Fernández Montenegro P, Valmaseda Castell?n E, Berini Ayt?s L, Gay Escoda C. Retrospective study of 145 supernumerary teeth. Med Oral Patol Oral Cir Bucal. 2006 ; 11:339-344.

31.

31. Pakdaman A, Meighani G. Diagnosis and management of supernumerary (mesiodens): a review of the literature. J Dent (Tehran). 2010 ; 7:41-49.

32.

32. Asaumi J, Shibata Y, Yanagi Y, et al. Radiographic examination of mesiodens and their associated complications. Dentomaxillofac Radiol. 2004 ; 33(2):125-127.

33.

33. Dinkar AD, Dawasaz AA, Shenoy S. Dentigerous cyst associated with multiple mesiodens: a case report. J Indian Soc Pedod Prev Dent. 2007 ; 25:56-59.

34.

34. Berube P, Yang Y, Carnes DL, Stover RE, Boland EJ, Ong JL. The effect of sputtered calcium phosphate coatings of different crystallinity on osteoblast differentiation. J Periodontol. 2005 ; 76:1697-1709.

35.

35. Rohanizadeh R, Padrines M, Bouler JM, Couchourel D, Fortun Y, Daculsi G. Apatite precipitation after incubation of biphasic calcium-phosphate ceramic in various solutions: influence of seed species and proteins. J Biomed Mater Res. 1998 ; 42:530-539.

36.

36. Shibli JA, Marcantonio E, d'Avila S, Guastaldi AC, Marcantonio E, Jr. Analysis of failed commercially pure titanium dental implants: a scanning electron microscopy and energy-dispersive spectrometer xray study. J Periodontol. 2005 ; 76:1092-1099.

37.

37. Kim YK, Kim SG, Yun PY, et al. Autogenous teeth used for bone grafting: a comparison with traditional grafting materials. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014 ; 117:e39-45.

38.

38. Vallet-Regi M, Gonz?lez-Calbet JM. Calcium phosphates as substitution of bone tissues. Progress in Solid State Chemistry. 2004 ; 32:1-31.

39.

39. Saffar JL, Colombier ML, Detienville R. Bone formation in tricalcium phosphate-filled periodontal intrabony lesions. Histological observations in humans. J Periodontol. 1990 ; 61:209-216.

40.

40. Kim YK, Kim SG, Oh JS, et al. Analysis of the inorganic component of autogenous tooth bone graft material. J Nanosci Nanotechnol. 2011 ; 11:7442-7445.

41.

41. Klug HP, Alexander LE. X-ray diffraction procedures: for polycrystalline and amorphous materials. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition, by Harold P. Klug, Leroy E. Alexander, Wiley-VCH, 1974 ; 1:992.

42.

42. Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials. 2004 ; 25:987-994.

43.

43. Balasundaram G, Sato M, Webster TJ. Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials. 2006 ; 27:2798-2805.

44.

44. Kirik S, Solovyov L, Blokhin A, Yakimov I. Structures of [Pd (NH3) 2X2] and its chemical transformation in the solid state. Acta Crystallographica Section B: Structural Science. 2000 ; 56:419-425.

45.

45. Lee S. Low crystalline hydroxyl carbonate apatite. J Korean Dental Assoc. 2006 ; 44:524-533.

logo