바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

A report of 38 unrecorded bacterial species in Korea, belonging to the phylum Actinobacteria

Journal of Species Research / Journal of Species Research, (E)2713-8615
2016, v.5 no.2, pp.223-234
Chi-Nam Seong
Mi-Sun Kim
Ji-Hee Lee
Joo-Won Kang
Seung Bum Kim
JANGCHEON CHO
Jung-Hoon Yoon (Sungkyunkwan University)
Kiseong Joh (Hankuk University of Foreign Studies)
Chang-Jun Cha (Chung-Ang University)
Im Wan-Taek
Jin-Woo Bae (Kyung Hee University)
  • Downloaded
  • Viewed

Abstract

As a subset work for the collection of indigenous prokaryotic species in Korea, 38 actinobacterial strains were isolated from various environmental samples obtained from plant root, ginseng cultivating soil, mud flat, freshwater and seawater. Each strain showed higher 16S rRNA gene sequence similarity (>99.1%) and formed a robust phylogenetic clade with closest actinobacterial species which were defined and validated with nomenclature, already. There is no official description on these 38 actinobacterial species in Korea. Consequently, unrecorded 37 species of 24 genera in the 12 families belonging to the order Actinomycetales of the phylum Actinobacteria were found in Korea. Morphological properties, basic biochemical characteristics, isolation source and strain IDs are described in the species descriptions.

keywords
16S rRNA sequence, Actinobacteria, Actinomycetales, unrecorded species

Reference

1.

Bressan, W. 2003. Biological control of maize seed pathogenic fungi by use of actinomycetes. Biocontrol 48(2):233-240.

2.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences:a maximum likelihood approach. Journal of Molecular Evolution 17(6):368-376.

3.

Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783-791.

4.

Fitch, W.M. 1971. Toward defining the course of evolution:minimum change for a specific tree topology. Syst. Zool. 20:406-416.

5.

Gordon, R.E. and J.M. Mihm. 1962. Identification of Nocardia caviae (Erikson) nov. comb. Ann. N. Y. Acad. Sci. 98:628-636.

6.

Gupte, M., P. Kulkarni and B.N. Ganguli. 2002. Antifungal antibiotics. Appl Microbiol Biotechnol. 58(1):46-57.

7.

Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95-98.

8.

Jukes, T.H. and C.R. Cantor. 1969. Evolution of protein molecules. In: H. N. Munro (ed.), Mammalian Protein Metabolism. Academic Press, New York, pp. 21-132.

9.

Kim, O.S., Y.J. Cho, K. Lee, S.H. Yoon, M. Kim, H. Na, S.C. Park, Y.S. Jeon, J.H. Lee, H. Yi, S. Won and J. Chun. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62(3):716-721.

10.

Mahajan, G.B. 2012. Antibacterial agents from actinomycetes - a review. Frontiers in Bioscience 4:240-253.

11.

Miao, V. and J. Davies. 2010. Actinobacteria: the good, the bad and the ugly. Antonie Van Leeuwenhoek 98(2):143-150.

12.

Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4):406-425.

13.

Servin, J.A., C.W. Herbold, R.G. Skophammer and J.A. Lake. 2008. Evidence excluding the root of the tree of life from the actinobacteria. Molecular Biology and Evolution 25(1):1-4.

14.

Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30(12):2725-2729.

15.

Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-4680.

16.

Ventura, M., C. Canchaya, A. Tauch, G. Chandra, G.F. Fitzgerald, K.F. Chater and D. van Sinderen. 2007. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71(3):495-548.

Journal of Species Research