바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Unrecorded bacterial species belonging to the phylum Actinobacteria originated from Republic of Korea

Journal of Species Research / Journal of Species Research, (E)2713-8615
2017, v.6 no.1, pp.25-41
김미선 (순천대학교)
이지희 (순천대학교)
김승범 (충남대학교)
조장천 (인하대학교)
이순동 (제주대학교)
조기성 (한국외국어대학교)
차창준 (중앙대학교)
임완택 (한경대학교)
배진우 (경희대학교)
장광엽 (전북대학교)
이하나 (고려대학교)
성치남 (순천대학교)
  • 다운로드 수
  • 조회수

Abstract

As a subset study for the collection of Korean indigenous prokaryotic species, 62 bacterial strains belonging to the phylum Actinobacteria were isolated from various sources. Each strain showed higher 16S rRNA gene sequence similarity (>98.75%) and formed a robust phylogenetic clade with closest species of the phylum Actinobacteria which were defined with valid names, already. There is no official description on these 62 actinobacterial species in Korea. Consequently, unrecorded 62 species of 25 genera in the 14 families belonging to the order Actinomycetales of the phylum Actinobacteria were found in Korea. Morphological properties, basic biochemical characteristics, isolation source and strain IDs are described in the species descriptions.

keywords
16S rRNA gene sequence, Actinobacteria, Actinomycetales, unrecorded species

참고문헌

1.

Bressan, W. 2003. Biological control of maize seed pathogenic fungi by use of actinomycetes. Biocontrol 48(2):233-240.

2.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences:a maximum likelihood approach. J. Mol. Evol. 17(6):368-376.

3.

Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39(4):783-791.

4.

Fitch, W.M. 1971. Toward defining the course of evolution:minimum change for a specific tree topology. Syst. Zool. 20(4):406-416.

5.

Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-98.

6.

Jukes, T.H. and C.R. Cantor. 1969. Evolution of protein molecules. In: H.N. Munro (ed.), Mammalian Protein Metabolism, Academic Press, New York. pp. 21-132.

7.

Kim, O.S., Y.J. Cho, K. Lee, S.H. Yoon, M. Kim, H. Na, S.C. Park, Y.S. Jeon, J.H. Lee, H. Yi, S. Won and J. Chun. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62(3):716-721.

8.

Ludwig, W., J. Euzéby, P. Schumann, H.J. Busse, M.E. Trujillo, P. Kämpfer and W.B. Whiteman. 2012. Road map of the phylum Actinobacteria. In: M. Goodfellow, P. Kämpfer, H.J. Busse, M.E. Trujillo, K.I. Suzuki, W. Ludwig and W.B. Whitman (eds.), Bergey’s manual of systematic bacteriology, vol 5, Springer-Verlag, New York. pp. 1-28.

9.

Miao, V. and J. Davies. 2010. Actinobacteria: the good, the bad and the ugly. Antonie Van Leeuwenhoek 98(2):143-150.

10.

Saitou, N. and M. Nei. 1987. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4):406-425.

11.

Servin, J.A., C.W. Herbold, R.G. Skophammer and J.A. Lake. 2008. Evidence excluding the root of the tree of life from the actinobacteria. Mol. Biol. Evol. 25(1):1-4.

12.

Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30(12):2725-2729.

13.

Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22): 4673-4680.

14.

Ventura, M., C. Canchaya, A. Tauch, G. Chandra, G.F. Fitzgerald, K.F. Chater and D. van Sinderen. 2007. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 71(3):495-548.

Journal of Species Research