바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Unrecorded bacterial species belonging to the phylum Actinobacteria originated from Republic of Korea

Journal of Species Research / Journal of Species Research, (E)2713-8615
2017, v.6 no.1, pp.25-41
MI SUN KIM

Seung Bum Kim
JANGCHEON CHO
LEE SOON DONG
Joh Ki Seong
Cha Chang Jun
Im Wan-Taek
Bae Jin-Woo
Kwang-Yeop Jahng
Yi, Hana
Chi-Nam Seong
  • Downloaded
  • Viewed

Abstract

As a subset study for the collection of Korean indigenous prokaryotic species, 62 bacterial strains belonging to the phylum Actinobacteria were isolated from various sources. Each strain showed higher 16S rRNA gene sequence similarity (>98.75%) and formed a robust phylogenetic clade with closest species of the phylum Actinobacteria which were defined with valid names, already. There is no official description on these 62 actinobacterial species in Korea. Consequently, unrecorded 62 species of 25 genera in the 14 families belonging to the order Actinomycetales of the phylum Actinobacteria were found in Korea. Morphological properties, basic biochemical characteristics, isolation source and strain IDs are described in the species descriptions.

keywords
16S rRNA gene sequence, Actinobacteria, Actinomycetales, unrecorded species

Reference

1.

Bressan, W. 2003. Biological control of maize seed pathogenic fungi by use of actinomycetes. Biocontrol 48(2):233-240.

2.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences:a maximum likelihood approach. J. Mol. Evol. 17(6):368-376.

3.

Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39(4):783-791.

4.

Fitch, W.M. 1971. Toward defining the course of evolution:minimum change for a specific tree topology. Syst. Zool. 20(4):406-416.

5.

Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-98.

6.

Jukes, T.H. and C.R. Cantor. 1969. Evolution of protein molecules. In: H.N. Munro (ed.), Mammalian Protein Metabolism, Academic Press, New York. pp. 21-132.

7.

Kim, O.S., Y.J. Cho, K. Lee, S.H. Yoon, M. Kim, H. Na, S.C. Park, Y.S. Jeon, J.H. Lee, H. Yi, S. Won and J. Chun. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62(3):716-721.

8.

Ludwig, W., J. Euzéby, P. Schumann, H.J. Busse, M.E. Trujillo, P. Kämpfer and W.B. Whiteman. 2012. Road map of the phylum Actinobacteria. In: M. Goodfellow, P. Kämpfer, H.J. Busse, M.E. Trujillo, K.I. Suzuki, W. Ludwig and W.B. Whitman (eds.), Bergey’s manual of systematic bacteriology, vol 5, Springer-Verlag, New York. pp. 1-28.

9.

Miao, V. and J. Davies. 2010. Actinobacteria: the good, the bad and the ugly. Antonie Van Leeuwenhoek 98(2):143-150.

10.

Saitou, N. and M. Nei. 1987. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4):406-425.

11.

Servin, J.A., C.W. Herbold, R.G. Skophammer and J.A. Lake. 2008. Evidence excluding the root of the tree of life from the actinobacteria. Mol. Biol. Evol. 25(1):1-4.

12.

Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30(12):2725-2729.

13.

Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22): 4673-4680.

14.

Ventura, M., C. Canchaya, A. Tauch, G. Chandra, G.F. Fitzgerald, K.F. Chater and D. van Sinderen. 2007. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 71(3):495-548.

Journal of Species Research