바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Unrecorded prokaryotic species belonging to the class Actinobacteria in Korea

Journal of Species Research / Journal of Species Research, (E)2713-8615
2019, v.8 no.1, pp.97-108
https://doi.org/10.12651/JSR.2019.8.1.097
MI SUN KIM
Chi-Nam Seong
Kang Joo Won
Seung Bum Kim
JANGCHEON CHO
Cha Chang Jun
Im Wan-Taek
Bae Jin-Woo
LEE SOON DONG
Kim Wonyong
Seong-Hwa Jeong
Myung Kyum Kim

Abstract

For the collection of indigenous prokaryotic species in Korea, 35 strains within the class Actinobacteria were isolated from various environmental samples (animals and clinical specimens) in 2017. Each strain showed high 16S rRNA gene sequence similarity (>98.8%) and formed a robust clade with recognized actinobacterial species. The isolates were assigned to 35 species, 22 genera, 15 families, and 8 orders of the class Actinobacteria. There are no official descriptions of these 35 bacterial species in Korea. Morphological properties, basic biochemical characteristics, isolation source, and strain IDs are included in the species descriptions.

keywords
16S rRNA sequence, Actinobacteria, unrecorded species

Reference

1.

Bae, K.S., M.S. Kim, J.H. Lee, J.W. Kang, D.I. Kim, J.H. Lee and C.N. Seong. 2016. Korean indigenous bacterial species with valid names belonging to the phylum Actinobacteria. J Microbiol. 54(12):789-795.

2.

Barka, E.A., P. Vatsa, L. Sanchez, N.G. Vaillant, C. Jacquard, H.P. Klenk, C. Clement, Y. Ouhdouch and G.P. van Wezel. 2015. Taxonomy, physiology and natural products of Actinobacteria. Microbiol Mol Biol Rev. 80(1):1-43.

3.

Chun, J. and M. Goodfellow. 1995. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45(2):240-245.

4.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences:a maximum likelihood approach. J Mol Evol. 17(6):368-376.

5.

Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39(4):783-791.

6.

Fitch, W.M. 1971. Toward defining the course of evolution:minimum change for a specific tree topology. Syst Zool. 20(4):406-416.

7.

Goodfellow, M. and S.T. Williams. 1983. Ecology of Actinomycetes. Annu Rev Microbiol. 37:189-216.

8.

Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 41:95-98.

9.

Jendrossek, D., G. Tomasi and R.M. Kroppenstedt. 1997. Bacterial degradation of natural rubber: a privilege of actinomycetes? FEMS Microbiol. Lett. 150(2):179-188.

10.

Jukes, T.H. and C.R. Cantor. 1969. Evolution of protein molecules. In: Munro, H.N. (eds.), Mammalian Protein Metabolism. Academic Press, New York. pp. 21-132.

11.

Kim, O.S., Y.J. Cho, K. Lee, S.H. Yoon, M. Kim, H. Na, S.C. Park, Y.S. Jeon, J.H. Lee, H. Yi, S. Won and J. Chun. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol. 62 (3):716-721.

12.

Saitou, N. and M. Nei. 1987. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol Biol Evol. 4(4):406-425.

13.

Servin, J.A., C.W. Herbold, R.G. Skophammer and J.A. Lake. 2008. Evidence excluding the root of the tree of life from the actinobacteria. Mol Biol Evol. 25(1):1-4.

14.

Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 30(12):2725-2729.

15.

Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22):4673-4680.

16.

Ventura, M., C. Canchaya, A. Tauch, G. Chandra, G.F. Fitzgerald, K.F. Chater and D. van Sinderen. 2007. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev. 71(3):495-548.

Journal of Species Research