바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Complete mitochondrial genome of Nyctalus aviator and phylogenetic analysis of the family Vespertilionidae

Journal of Species Research / Journal of Species Research, (E)2713-8615
2019, v.8 no.3, pp.313-317
https://doi.org/10.12651/JSR.2019.8.3.313
Seon-Mi Lee
Mu-Yeong Lee
Sun-Sook Kim

Hye Sook Jeon

Abstract

Bats influence overall ecosystem health by regulating species diversity and being a major source of zoonotic viruses. Hence, there is a need to elucidate their migration, population structure, and phylogenetic relationship. The complete mitochondrial genome is widely used for studying the genome-level characteristics and phylogenetic relationship of various animals due to its high mutation rate, simple structure, and maternal inheritance. In this study, we determined the complete mitogenome sequence of the bird-like noctule (Nyctalus aviator) by Illumina next-generation sequencing. The sequences obtained were used to reconstruct a phylogenic tree of Vespertilionidae to elucidate the phylogenetic relationship among its members. The mitogenome of N. aviator is 16,863-bp long with a typical vertebrate gene arrangement, consisting of 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 putative control region. Overall, the nucleotide composition is as follows: 32.3% A, 24.2% C, 14.3% G, and 29.2% T, with a slight AT bias (61.5%). The base composition of the 13 PCGs is as follows: 30.3% A, 13.4% G, 31.0% T, and 25.2% C. The phylogenetic analysis, based on 13 concatenated PCG sequences, infers that N. aviator is closely related to N. noctula with a high bootstrap value (100%).

keywords
mitochondrial genome, molecular phylogenetics, next-generation sequencing, Nyctalus aviator

Reference

1.

Baek, S.Y., E.H. Choi, K.H. Jang, S.H. Ryu, S.M. Park, H.Y. Suk, C.Y. Chang and U.W. Hwang. 2014. Complete mitochondrial genomes of Carcinoscorpius rotundicauda and Tachypleus tridentatus (Xiphosura, Arthropoda) and implications for chelicerate phylogenetic studies. Int. J. Biol. Sci. 10(5):479-489.

2.

Benson, G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucl. Acid Res. 27(2):573-580.

3.

Botero-Castro, F., M.K. Tilak, F. Justy, F. Catzeflis, F. Delsuc and E.J.P. Douzery. 2013. Next-generation sequencing and phylogenetic signal of complete mitochondrial genomes for resolving the evolutionary history of leaf-nosed bats (Phyllostomidae). Mol. Phylogenet. Evol. 69(3):728-739.

4.

Fenton, M.B., L. Acharya, D. Audet, M.B.C. Hickey, C. Merriman, M.K. Obrist, D.M. Syme and B. Adkins. 1992. Phyllostomid bats (Chiroptera: Phyllostomidae) as indicators of habitat disruption in the Neotropics. Biotropica 24(3):440-446.

5.

Fukui, D. 2009. Nyctalus aviator. In: S.D. Ohdachi, Y. Ishibashi, M.A. Iwasa and T. Saitoh (eds), The Wild Mammals of Japan. Shoukado Press, Kyoto. pp. 74-75.

6.

Hiendleder, S., K. Mainz, Y. Plante and H. Lewalski. 1998. Analysis of mitochondrial DNA indicates that domestic sheep are derived from two different ancestral maternal sources: no evidence for contributions from urial and argali sheep. J. Hered. 89(2):113-120.

7.

Kim, K., S.C. Lee, J. Lee, Y. Yu, K. Yang, B.S. Choi, H.J. Koh, N.E. Waminal, H.I. Choi, N.H. Kim, W. Jang, H.S. Park, J. Lee, H.O. Lee, H.J. Joh, H.J. Lee, J.Y. Park, S. Perumal, M. Jayakodi, Y.S. Lee, B. Kim, D. Copetti, S. Kim, S. Kim, K.B. Lim, Y.D. Kim, J. Lee, K.S. Cho, B.S. Park, R.A. Wing and T.J. Yang. 2015. Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species. Sci. Rep. 5:15655.

8.

Knudsen, B., A.B. Kohn, B. Nahir, C.S. McFadden and L.L. Moroz. 2006. Complete DNA sequence of the mitochondrial genome of the sea-slug, Aplysia californica: conservation of the gene order in Euthyneura. Mol. Phylogenet. Evol. 38(2):459-469.

9.

Kunz, T.H., E. Braun de Torrez, D. Bauer, T. Lobova and T.H. Fleming. 2011. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 1223(1):1-38.

10.

Laslett, D. and B. Canbäck. 2008. ARWEN, a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24(2):172-175.

11.

Lobry, J.R. 1996. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol. 13(5):660-665.

12.

Mayfield, J.E. and J.F. McKenna. 1978. AT rich sequences in vertebrate DNA. Chromosoma 67(2):157-163.

13.

O’shea, T.J., P.M. Cryan, A.A. Cunningham, A.R. Fooks, D.T. Hayman, A.D. Luis, A.J. Peel, R.K. Plowrigh and J.L. Wood. 2014. Bat flight and zoonotic viruses. Emerg. Infect. Dis. 20(5):741-745.

14.

O’shea, T.J., P.M. Cryan, D.T. Hayman, R.K. Plowright and D.G. Streicker. 2016. Multiple mortality events in bats: a global review. Mammal Rev. 46(3):175-190.

15.

Qian, K., D. Yu, H. Cheng, K.B. Storey and J. Zhang. 2016. The complete mitochondrial genome of Nyctalus noctula (Chiroptera: Vespertilionidae). Mitochondrial DNA A DNA Mapp. Seq. Anal 27(4):2365-2366.

16.

Simmons, N.B. 2005. Order Chiroptera. In: D.E. Wilson and D.M. Reeder (eds), Mammal Species of the World: A Taxonomic and Geographic Reference. Hopkins University Press, Maryland. pp. 312-529.

17.

Simmons, N.B., K.L. Seymour, J. Habersetzer and G.F. Gunnell. 2008. Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451(7180):818-821.

18.

Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30:2725-2729.

19.

Tillich, M., P. Lehwark, T. Pellizzer, E.S. Ulbricht-Jones, A. Fischer, R. Bock and S. Greiner. 2017. GeSeq - versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45(W1):W6-W11.

20.

Tsytsulina, K. 2008. Nyctalus aviator. The IUCN Red List of Threatened Species 2008: e.T14921A4474887. [available from: http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS. T14921A4474887.en, accessed 24 September 2018].

21.

Wyman, S.K., R.K. Jansen and J.L. Boore. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252-3255.

22.

Yu, J.N., N. Azuma and S. Abe. 2012. Genetic differentiation between collections of hatchery and wild masu salmon (Oncorhynchus masou) inferred from mitochondrial and microsatellite DNA analysis. Environ. Biol. Fish. 94:259-271.

Journal of Species Research