바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

초소형 IoT 장치에 구현 가능한 딥러닝 양자화 기술 분석

Analysis of Deep learning Quantization Technology for Micro-sized IoT devices

한국사물인터넷학회논문지 / Journal of The Korea Internet of Things Society, (P)2466-0078;
2023, v.9 no.1, pp.9-17
https://doi.org/https://doi.org/10.20465/kiots.2023.9.1.009
김영민 (가천대학교)
한경현 (홍익대학교(세종캠퍼스))
황성운 (가천대학교)
  • 다운로드 수
  • 조회수

초록

많은 연산량을 가진 딥러닝은 초소형 IoT 장치나 모바일 장치에 구현하기가 어렵다. 최근에는 이러한 장치에서도 딥러닝을 구현할 수 있도록 모델의 연산량을 줄이는 딥러닝 경량화 기술이 소개되었다. 양자화는 연속적인 분포를가지는 파라미터 값들을 고정된 비트의 이산 값으로 표현하여 모델의 메모리 및 크기 등을 줄여 효율적으로 사용할수 있는 경량화 기법이다. 그러나 양자화로 인한 이산 값 표현으로 인해 모델의 정확도가 낮아지게 된다. 본 논문에서는정확도를 개선할 수 있는 다양한 양자화 기술을 소개한다. 먼저 기존 양자화 기술 중 APoT와 EWGS를 선택하여 동일한 환경에서 실험을 통해 결과를 비교 분석하였다. 선택된 기술은 ResNet모델에서 CIFAR-10 또는 CIFAR-100 데이터 세트로 훈련되고 테스트 되었다. 실험 결과 분석을 통해 기존 양자화 기술의 문제점을 파악하고 향후 연구에 대한방향성을 제시하였다.

keywords
Internet of Things, Deep Learning, Quantization, Model Training, Experimental Configuration, 사물인터넷, 딥러닝, 양자화, 모델 훈련, 실험 구성

Abstract

Deep learning with large amount of computations is difficult to implement on micro-sized IoT devices or moblie devices. Recently, lightweight deep learning technologies have been introduced to make sure that deep learning can be implemented even on small devices by reducing the amount of computation of the model. Quantization is one of lightweight techniques that can be efficiently used to reduce the memory and size of the model by expressing parameter values with continuous distribution as discrete values of fixed bits. However, the accuracy of the model is reduced due to discrete value representation in quantization. In this paper, we introduce various quantization techniques to correct the accuracy. We selected APoT and EWGS from existing quantization techniques, and comparatively analyzed the results through experimentations The selected techniques were trained and tested with CIFAR-10 or CIFAR-100 datasets in the ResNet model. We found out problems with them through experimental results analysis and presented directions for future research.

keywords
Internet of Things, Deep Learning, Quantization, Model Training, Experimental Configuration, 사물인터넷, 딥러닝, 양자화, 모델 훈련, 실험 구성

한국사물인터넷학회논문지