바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

국소 골 재생에서의 화학적으로 가교화된 돼지유래 콜라겐 차단막과 고용해성 이상인산칼슘 병행 사용의 효과

Combined effects of a chemically cross-linked porcine collagen membrane and highly soluble biphasic calcium phosphate on localized bone regeneration

Abstract

Objectives: Aim of this study was to evaluate bone regenerative efficacy of a chemically cross-linked porcine collagen membrane (CM) when used in combination with highly soluble biphasic calcium phosphate (BCP). Materials and methods: Physiochemical properties of the experimental collagen membrane were analyzed. Four circumferential defects with diameter of 8 mm were created in each calvarium of New Zealand white rabbits (n = 10). Defects were randomly allocated to one of following 4 groups: 1) BCP-CM (BCP (20% hydroxyapatite/80% -tricalcium phosphate) covered with the prepared collagen membrane), 2) BCP (only BCP used), 3) CM (only the prepared collagen membrane used), and 4) C (control; only blood clot). After 2 weeks (n = 5) and 8 weeks (n = 5), histologic and histomorphometric analyses were performed. Results: The experimental collagen membrane exhibited dense and compact structure, relatively high tensile strength and lower degradability. Histologic analyses revealed that new bone increased rapidly at 2 weeks, while defect was preserved at 8 weeks. Histomorphometric analyses revealed that the new bone areas increased in the BCP-grafted groups over 8 weeks, with BCP-CM exhibiting greater total augmented area than that of BCP group both at 2 weeks (27.12 3.99 versus 21.97 2.27 ) and 8 weeks (25.75 1.82 versus 22.48 1.10 ) (P < 0.05). Conclusions: The experimental collagen membrane successfully preserved localized defect for 8 weeks despite early rapid resorption of BCP. Within the study limitations, combined use of the chemically cross-linked porcine collagen membrane and highly soluble BCP aided localized bone regeneration.

keywords
Biodegradation, Biphasic calcium phosphate, Bone regeneration, Bone substitute, Collagen membrane

참고문헌

1.

Hammerle CH, Jung RE. Bone augmentation by means of barrier membranes. Periodontol 2000 2003;33:36-53.

2.

Thoma DS, Halg GA, Dard MM, Seibl R, Hammerle CH, Jung RE. Evaluation of a new biodegradable membrane to prevent gingival ingrowth into mandibular bone defects in minipigs. Clin Oral Implants Res 2009;20:7-16.

3.

Simion M, Baldoni M, Rossi P, Zaffe D. A comparative study of the effectiveness of e-PTFE membranes with and without early exposure during the healing period. Int J Periodontics Restorative Dent 1994;14:166-80.

4.

Aaboe M, Pinholt EM, Schou S, Hjorting-Hansen E. Incomplete bone regeneration of rabbit calvarial defects using different membranes. Clin Oral Implants Res 1998;9:313-20.

5.

Selvig KA, Kersten BG, Chamberlain ADH, Wikesjo UME, Nilveus RE. Regenerative Surgery of Intrabony Periodontal Defects Using Eptfe Barrier Membranes - Scanning Electron-Microscopic Evaluation of Retrieved Membranes Versus Clinical Healing. J Periodontol 1992;63:974-8.

6.

Tempro PJ, Nalbandian J. Colonization of Retrieved Polytetrafluoroethylene Membranes - Morphological and Microbiological Observations. J Periodontol 1993;64:162-8.

7.

Yukna CN, Yukna RA. Multi-center evaluation of bioabsorbable collagen membrane for guided tissue regeneration in human Class II furcations. J Periodontol 1996;67:650-7.

8.

Mattson JS, Gallagher SJ, Jabro MH. The use of 2bioabsorbable barrier membranes in the treatment of interproximal intrabony periodontal defects. J Periodontol 1999;70:510-7.

9.

Silvipriya KS, Krishna Kumar K, Bhat AR, Dinesh Kumar B, Anish John, Panayappan lakshmanan. Collagen: Animal Sources and Biomedical Application. J App Pharm Sci, 2015; 5 (03): 123-127.

10.

Tatakis DN, Promsudthi A, Wikesjo UM. Devices for periodontal regeneration. Periodontol 2000 1999;19:59-73.

11.

Minabe M, Kodama T, Kogou T, Tamura T, Hori T, Watanabe Y, et al. Different cross-linked types of collagen implanted in rat palatal gingiva. J Periodontol 1989;60:35-43.

12.

Bunyaratavej P, Wang HL. Collagen membranes: a review. J Periodontol 2001;72:215-29.

13.

Rothamel D, Schwarz F, Sager M, Herten M, Sculean A, Becker J. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat. Clin Oral Implants Res 2005;16:369-78.

14.

Bouler JM, Pilet P, Gauthier O, Verron E. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater 2017;53:1-12.

15.

Erbe EM, Marx JG, Clineff TD, Bellincampi LD. Potential of an ultraporous beta-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft. Eur Spine J 2001;10 Suppl 2:S141-6.

16.

LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 2002:81-98.

17.

Lim HC, Song KH, You H, Lee JS, Jung UW, Kim SY, et al. Effectiveness of biphasic calcium phosphate block bone substitutes processed using a modified extrusion method in rabbit calvarial defects. J Periodontal Implant Sci 2015;45:46-55.

18.

Hayden JM, Mohan S, Baylink DJ. The insulin-like growth factor system and the coupling of formation to resorption. Bone 1995;17:93S-8S.

19.

Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of biphasic calcium phosphate ceramic in vitro. J Biomed Mater Res 1997;37:346-52.

20.

Jung IH, Lim HC, Lee EU, Lee JS, Jung UW, Choi SH. Comparative analysis of carrier systems for delivering bone morphogenetic proteins. J Periodontal Implant Sci 2015;45:136-44.

21.

Lee CK, Koo KT, Kim TI, Seol YJ, Lee YM, Rhyu IC, et al. Biological effects of a porcine-derived collagen membrane on intrabony defects. J Periodontal Implant Sci 2010;40:232-8.

22.

Buser D, Chappuis V, Kuchler U, Bornstein MM, Wittneben JG, Buser R, et al. Long-term stability of early implant placement with contour augmentation. J Dent Res 2013;92:176S-82S.

23.

Jensen SS, Bornstein MM, Dard M, Bosshardt DD, Buser D. Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J Biomed Mater Res B Appl Biomater 2009;90:171-81.

24.

Ramirez-Fernandez M, Calvo-Guirado JL, Delgado-Ruiz RA, Mate-Sanchez del Val JE, Vicente-Ortega V, Meseguer-Olmos L. Bone response to hydroxyapatites with open porosity of animal origin (porcine [OsteoBiol mp3] and bovine [Endobon]):a radiological and histomorphometric study. Clin Oral Implants Res 2011;22:767-73.

25.

Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomater 2008;29:2588-96.

26.

Pripatnanont P, Nuntanaranont T, Vongvatcharanon S. Proportion of deproteinized bovine bone and autogenous bone affects bone formation in the treatment of calvarial defects in rabbits. Int J Oral Maxillofac Surg 2009;38:356-62.

27.

Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, Cho KS, et al. Spontaneous healing capacity of rabbit cranial defects of various sizes. J Periodontal Implant Sci 2010;40:180-7.

28.

Yang C, Unursaikhan O, Lee JS, Jung UW, Kim CS, Choi SH. Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits. J Biomed Mater Res B Appl Biomater 2014;102:80-8.

29.

Ghanaati S, Barbeck M, Detsch R, Deisinger U, Hilbig U, Rausch V, et al. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, betatricalcium phosphate and biphasic calcium phosphate ceramics. Biomed Mater 2012;7:015005.

30.

Zhiyong ZH, K.; Hiroshi, K.; Kenji, K. Osteoinduction with HA/β-TCP Ceramics of Different Composition and Porous Structure in Rabbits. Oral Sci Int 2005;2:85-95.

31.

Lim HC, Kim KT, Lee JS, Jung UW, Choi SH. In Vivo Comparative Investigation of Three Synthetic Graft Materials with Varying Compositions Processed Using Different Methods. Int J Oral Maxillofac Implants 2015;30:1280-6.

32.

Caton JG, DeFuria EL, Polson AM, Nyman S. Periodontal regeneration via selective cell repopulation. J Periodontol 1987;58:546-52.

33.

Enea D, Henson F, Kew S, Wardale J, Getgood A, Brooks R, et al. Extruded collagen fibres for tissue engineering applications: effect of crosslinking method on mechanical and biological properties. J Mater Sci Mater Med 2011;22:1569-78.

34.

Haim T, Ofer M, Avital K, Carolos N. Bioresorbable Collagen Membranes for Guided Bone Regeneration. In: Haim T. Bone regeneration. 1st ed. Israel: InTech; 2012.p111-124

35.

Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc 2000;5:40-6.

36.

Kitayama S, Wong LO, Ma L, Hao J, Kasugai S, Lang NP, et al. Regeneration of rabbit calvarial defects using biphasic calcium phosphate and a strontium hydroxyapatite-containing collagen membrane. Clin Oral Implants Res 2016;27:e206-e14.

logo